Skip to main content
Log in

Vibration of scanning near-field optical microscope probe with laser-induced thermal effect using Timoshenko beam theory

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The Timoshenko beam theory, including the effects of rotary inertia and shear deformation, is used to analyze the resonant frequency of lateral vibration of scanning near-field optical microscope (SNOM) tapered probe with a laser-induced thermal effect. In the analysis, the thermal effect can be considered as an axial force and is dependent of temperature distribution of the probe. The Rayleigh–Ritz method is used to solve the vibration problem of the probe. According to the analysis, the frequencies of the first three vibration modes increase when the thermal effect is taken into account. The effects of shear deformation and rotary inertia on the frequency ratio of a Timoshenko beam to an Euler beam increase when the mode number increases and the contact stiffness decreases. In addition, the frequency of mode 1 increases with increasing taper angle and coating thickness of the probe. Comparison of the frequency of a SNOM probe coated with Al, Ag, or Au, the highest is with Al coating, and the lowest is with Au coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Yao, Z.L. Wang, Handbook of Microscopy for Nanotechnology (Kluwer Academic, New York, 2005)

    Book  Google Scholar 

  2. P.M. Vilarinho, Y. Rosenwaks, A.I. Kingon, Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials (Kluwer Academic, Boston, 2005)

    Book  Google Scholar 

  3. G. Kaupp, Atomic Force Microscopy, Scanning Near-field Optical Microscopy and Nanoscratching: Application to Rough and Natural Surfaces (Springer, New York, 2006)

    Google Scholar 

  4. D. Haefliger, A. Stemmer, Microelectron. Eng. 61–62, 523 (2002)

    Article  Google Scholar 

  5. D. Liu, W. Zhang, X. Zhu, L. Cao, B. Zou, Z. Zhang, Mod. Phys. Lett. B 21, 543 (2007)

    Article  MATH  ADS  Google Scholar 

  6. J.W. Kingsley, S.K. Ray, A.M. Adawi, G.J. Leggett, D.G. Lidzey, Appl. Phys. Lett. 93, 213103 (2008)

    Article  ADS  Google Scholar 

  7. I. Kentaro, O. Takahito, E. Masayoshi, Jpn. J. Appl. Phys. 47, 8095 (2008)

    Article  Google Scholar 

  8. J. Lamela, G. Lifante, T.P.J. Han, F. Jaque, A. García-Navarro, J. Olivares, F. Agulló-López, Appl. Surf. Sci. 255, 3918 (2009)

    Article  ADS  Google Scholar 

  9. A. Ambrosio, O. Fenwick, F. Cacialli, R. Micheletto, Y. Kawakami, P.G. Gucciardi, D.J. Kang, M. Allegrini, J. Appl. Phys. 99, 084303 (2006)

    Article  ADS  Google Scholar 

  10. S. Vignolini, F. Intonti, L. Balet et al., Appl. Phys. Lett. 93, 023124 (2008)

    Article  ADS  Google Scholar 

  11. M. Stahelin, M.A. Bopp, G. Tarrach, A.J. Meixner, I. Zschokke-Granacher, Appl. Phys. Lett. 68, 2603 (1996)

    Article  ADS  Google Scholar 

  12. E. Finot, Y. Lacroute, E. Bourillot, V. Rouessac, J. Durand, J. Appl. Phys. 95, 5137 (2004)

    Article  ADS  Google Scholar 

  13. H.L. Lee, W.J. Chang, W.L. Chen, Y.C. Yang, Ultramicroscopy 10, 656 (2007)

    Article  Google Scholar 

  14. W.J. Chang, T.Y.F. Chen, H.L. Lee, Jpn. J. Appl. Phys. 47, 3657 (2008)

    Article  ADS  Google Scholar 

  15. T.Y.F. Chen, H.L. Lee, Microelectron. J. 40, 53 (2009)

    Article  MathSciNet  Google Scholar 

  16. C.R. Cowper, J. Appl. Mech. 33, 335 (1996)

    Google Scholar 

  17. L. Thiery, N. Marini, Ultramicroscopy 94, 49 (2003)

    Article  Google Scholar 

  18. Y.A. Cengel, Heat Transfer (McGraw-Hill, New York, 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-J. Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HL., Chang, WJ., Yang, YC. et al. Vibration of scanning near-field optical microscope probe with laser-induced thermal effect using Timoshenko beam theory. Appl. Phys. B 97, 653–659 (2009). https://doi.org/10.1007/s00340-009-3645-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3645-2

PACS

Navigation