Skip to main content
Log in

Local fields in a soft matter bubble

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The electric field created by a point dipole located in a dielectric void (“bubble”) is calculated. We consider a continuous profile of the medium permittivity and find that, at large distances, the effective dipole field depends on the model chosen for the bubble walls, in particular their thickness. A boundary layer model is analyzed that gives good agreement with numerical calculations. Our results shed light on the local field correction that has attracted lot of interest lately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), Chap. 7

    MATH  Google Scholar 

  2. D. Toptygin, J. Fluoresc. 13, 201 (2003)

    Article  Google Scholar 

  3. R.C. Dunn, Chem. Rev. 99, 2891 (1999)

    Article  Google Scholar 

  4. J. Michaelis, C. Hettich, J. Mlynek, V. Sandoghdar, Nature 405, 325 (2000)

    Article  ADS  Google Scholar 

  5. R. Brouri, A. Beveratos, J.-P. Poizat, P. Grangier, Phys. Rev. A 62, 063817 (2000)

    Article  ADS  Google Scholar 

  6. F. Jelezko, J. Wrachtrup, J. Phys. Condens. Matter. 16, R1089 (2004)

    Article  ADS  Google Scholar 

  7. J.Z. Jakubek, Q. Hui, M. Takami, Phys. Rev. Lett. 79, 629 (1997)

    Article  ADS  Google Scholar 

  8. F.J.P. Schuurmans, P. de Vries, A. Lagendijk, Phys. Lett. A 264, 472 (2000)

    Article  ADS  Google Scholar 

  9. C.K. Duan, M.F. Reid, Z.Q. Wang, Phys. Lett. A 343, 474 (2005)

    Article  MATH  ADS  Google Scholar 

  10. G.L.J.A. Rikken, Y.A.R.R. Kessener, Phys. Rev. Lett. 74, 880 (1995)

    Article  ADS  Google Scholar 

  11. G.Y. Slepyan, S.A. Maksimenko, A. Hoffmann, D. Bimberg, Phys. Rev. A 66, 063804 (2002)

    Article  ADS  Google Scholar 

  12. G.M. Kumar, D.N. Rao, G.S. Agarwal, Phys. Rev. Lett. 91, 203903 (2003)

    Article  ADS  Google Scholar 

  13. S.F. Wuister, C. de Mello Donegá, A. Meijerink, J. Chem. Phys. 121, 4310 (2004)

    Article  ADS  Google Scholar 

  14. C.K. Duan, M.F. Reid, Curr. Appl. Phys. 6, 348 (2006)

    Article  Google Scholar 

  15. A. Lagendijk, B. Nienhuis, B.A. van Tiggelen, P. de Vries, Phys. Rev. Lett. 79, 657 (1997)

    Article  ADS  Google Scholar 

  16. M. Fleischhauer, Phys. Rev. A 60, 2534 (1999)

    Article  ADS  Google Scholar 

  17. M.E. Crenshaw, C.M. Bowden, Phys. Rev. Lett. 85, 1851 (2000)

    Article  ADS  Google Scholar 

  18. P.R. Berman, P.W. Milonni, Phys. Rev. Lett. 92, 053601 (2004)

    Article  ADS  Google Scholar 

  19. H. Fu, P.R. Berman, Phys. Rev. A 72, 022104 (2005)

    Article  ADS  Google Scholar 

  20. J.H. Wesenberg, K. Molmer, Phys. Rev. Lett. 93, 143903 (2004)

    Article  ADS  Google Scholar 

  21. K.H. Drexhage, in Progress in Optics XII, ed. by E. Wolf (North-Holland, Amsterdam, 1974), pp. 163–232

    Google Scholar 

  22. P. Lavallard, M. Rosenbauer, T. Gacoin, Phys. Rev. A 54, 5450 (1996)

    Article  ADS  Google Scholar 

  23. G.S. Agarwal, Phys. Rev. A 12, 1475 (1975)

    Article  ADS  Google Scholar 

  24. G. Burlak, The Classical and Quantum Dynamics of the Multispherical Nanostructures (Imperial College Press, London, 2004)

    Google Scholar 

  25. R.R. Chance, A. Prock, R. Silbey, in Advances in Chemical Physics XXXVII, ed. by I. Prigogine, S.A. Rice (Wiley, New York, 1978), pp. 1–65

    Google Scholar 

  26. S.M. Barnett, B. Huttner, R. Loudon, Phys. Rev. Lett. 68, 3698 (1992)

    Article  ADS  Google Scholar 

  27. L. Knöll, S. Scheel, D.-G. Welsch, in Coherence and Statistics of Photons and Atoms, ed. by J. Peřina (Wiley, New York, 2001), [quant-ph/0006121]

    Google Scholar 

  28. G. Nienhuis, C.T.J. Alkemade, Physica C 81, 181 (1976)

    Article  Google Scholar 

  29. S. Scheel, L. Knöll, D.-G. Welsch, S.M. Barnett, Phys. Rev. A 60, 1590 (1999)

    Article  ADS  Google Scholar 

  30. V.V. Klimov, V.S. Letokhov, Chem. Phys. Lett. 301, 441 (1999)

    Article  ADS  Google Scholar 

  31. M.S. Tomaš, Phys. Rev. A 63, 053811 (2001)

    Article  ADS  Google Scholar 

  32. H.T. Dung, S.Y. Buhmann, D.G. Welsch, Phys. Rev. A 74, 023803 (2006)

    Article  ADS  Google Scholar 

  33. V.V. Klimov, M. Ducloy, V.S. Letokhov, Quantum Electron. 31, 569 (2001)

    Article  Google Scholar 

  34. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, International Series in Pure and Applied Mathematics (McGraw-Hill, New York, 1978)

    MATH  Google Scholar 

  35. A.H. Nayfeh, Introduction to Perturbation Techniques (Wiley, New York, 1981)

    MATH  Google Scholar 

  36. J.A. Osborn, Phys. Rev. 67, 351 (1945)

    Article  ADS  Google Scholar 

  37. H. van Kampen, V.A. Sautenkov, C.J.C. Smeets, E.R. Eliel, J.P. Woerdman, Phys. Rev. A 59, 271 (1999)

    Article  ADS  Google Scholar 

  38. P.W. Anderson, Science 177, 393 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Henkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henkel, C., Boedecker, G. & Wilkens, M. Local fields in a soft matter bubble. Appl. Phys. B 93, 217–221 (2008). https://doi.org/10.1007/s00340-008-3209-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3209-x

PACS

Navigation