Skip to main content
Log in

Analysis and application of zigzag phosphorene nanotube as gas nanosensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, single-layer black phosphorous (phosphorene) has engrossed significant attention because of its considerable electronic properties. The remarkable properties of phosphorene, including high charge carrier mobility and semiconducting behavior, opened a view of its applications in nanoelectronics, nanosensing and 2D-material engineering. We investigate the effects of some gas molecules such as CO, CO2, O2, NH and NH3 on the zigzag phosphorene nanotube (ZPNT) behavior. First, we present the gas sensing properties of ZPNT doped with Boron and Nitrogen atoms, and then, we propose a new ZPNT structure to modify its gas sensing applications. In addition, the current–voltage (IV) characteristics of the proposed structures are calculated via the non-equilibrium Green’s function formula. Based on IV data, we determine the sensitivity of the ZPNT structures in presence of different gases molecules. According to the calculated results, the B-ZPNT, B-ZPNT proposed and N-ZPNT proposed are sensitive to CO2, CO and NH gas molecules, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  2. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  ADS  Google Scholar 

  3. A. Kara, A review on silicone: new candidate for electronics. Surf. Sci. Rep. 67, 1–18 (2012)

    Article  ADS  Google Scholar 

  4. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, S. Ciraci, Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  5. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu, Tunable bandgap in silicene and germanene. Nano Lett. 12, 113 (2012)

    Article  ADS  Google Scholar 

  6. F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C. Liu, D. Qian, S.C. Zhang, J.J. Jia, Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015)

    Article  ADS  Google Scholar 

  7. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two dimensional atomic crystals. Proc. Natl. Acad. Sci. 102, 10451 (2005)

    Article  ADS  Google Scholar 

  8. H. Liu, Y, Liu, and D. Zhua, Chemical doping of graphene, J. Mat. Chem. 21, 3335–3345 (2011).

  9. I. Zanella, S. Guerini, S.B. Fagan, J.M. Filho, A.G.S. Filho, Chemical doping-induced gap opening and spin polarization in graphene. Phys. Rev. B 77, 73404 (2008)

    Article  ADS  Google Scholar 

  10. M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  11. Y.W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  12. M.Z. Rahman, C.W. Kwong, K. Davey, S.Z. Qiao, 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ. Sci. 9, 709–728 (2016)

    Article  Google Scholar 

  13. L. Kou, C. Chen, S.C. Smith, Phosphorene fabrication, properties, and applications. J. Phys. Chem. Lett. 6, 2794–2805 (2015)

    Article  Google Scholar 

  14. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)

    Article  ADS  Google Scholar 

  15. N. Gergel-Hackett, A. A. Hill, A. C. Hacker, A. C. Richter, The integration of molecular electronic devices with traditional CMOS technologies, in 2008 8th IEEE Conference on Nanotechnology, IEEE-NANO 522–525 (2008), https://doi.org/10.1109/NANO.2008.156.

  16. H. Du, X. Lin, Z. Xu, D. Chu, Recent developments in black phosphorus transistors. J. Mater. Chem. C 3, 8760–8775 (2015)

    Article  Google Scholar 

  17. A. Castellanos-Gomez, Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6, 4280–4291 (2015)

    Article  Google Scholar 

  18. A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya, S.I. Blanter, D.J. Groenendijk, M. Buscema, G.A. Steele, J.V. Alvarez, Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014)

    Article  Google Scholar 

  19. S.P. Koenig, R.A. Doganov, H. Schmidt, A.H. Castro Neto, B. Ozyilmaz, Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014)

    Article  ADS  Google Scholar 

  20. W. Zhu, M.N. Yogeesh, S. Yang, S.H. Aldave, J. Kim, S.S. Sonde, L. Tao, N. Lu, D. Akinwande, Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15, 1883–1890 (2015)

    Article  ADS  Google Scholar 

  21. V. Sorkin, H. Pan, H. Shi, S.Y. Quek, Y.W. Zhang, Nanoscale transition metal dichalcogenides: structures, properties, and applications. Crit. Rev. Solid State Mater. Sci. 39, 319–367 (2014)

    Article  ADS  Google Scholar 

  22. H. Liu et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014)

    Article  Google Scholar 

  23. W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, Z. Zhang, Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853–859 (2014)

    Article  Google Scholar 

  24. A.H. Woomer, T.W. Farnsworth, J. Hu, R.A. Wells, C.L. Donley, S.C. Warren, Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano 9, 8869–8884 (2015)

    Article  Google Scholar 

  25. G. Seifert, E. Hernandez, Theoretical prediction of phosphorus nanotubes. Chem. Phys. Lett. 318, 355–360 (2000)

    Article  ADS  Google Scholar 

  26. S. Yu, H. Zhu, K. Eshun, A. Arab, A. Badwan, Q. Li, A computational study of the electronic properties of one-dimensional armchair phosphorene nanotubes. J. Appl. Phys. 118, 164306 (2015)

    Article  ADS  Google Scholar 

  27. J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)

    Article  ADS  Google Scholar 

  28. H. Guo, N. Hu, J. Dai, X. Wu, X.C. Zeng, Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118, 14051–14059 (2014)

    Article  Google Scholar 

  29. V. Sorkin, Y. Cai, Z. Ong, G. Zhang, Y.W. Zhang, Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci. (2016). https://doi.org/10.1080/10408436.2016.1182469

    Article  Google Scholar 

  30. E. Montes, U. Schwingenschlogl, Superior selectivity and sensitivity of blue phosphorus nanotubes in gas sensing applications. J. Mater. Chem. C 5, 5365–5371 (2017). https://doi.org/10.1039/c6tc05094h

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Ghayour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahmani Kazerooni, H., Ghayour, R. & Pesaran, F. Analysis and application of zigzag phosphorene nanotube as gas nanosensor. Appl. Phys. A 127, 420 (2021). https://doi.org/10.1007/s00339-021-04513-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04513-w

Keywords

Navigation