Skip to main content
Log in

Laser ablation synthesis of Ag nanoparticles in graphene quantum dots aqueous solution and optical properties of nanocomposite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, silver nanoparticles were synthesized in a graphene quantum dots aqueous solution using the laser ablation method. A silver plate was ablated at different times, and silver nanoparticles formed in the graphene quantum dots solution at room temperature. The prepared samples were tested using these analytical methods. The graphene quantum dots surrounded the sphere-shaped silver nanoparticles; particle sizes ranged from 26.76 to 21.61 nm. The silver nanoparticles interacted with the carboxyl and hydroxyl functional groups. The prominent and considerable property of the silver nanoparticles/graphene quantum dots composite was enhancement of the Raman scattering. The obtained scattered Raman intensity was nearly 6 times stronger than pure graphene quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Stiufiuc, C. Iacovita, C.M. Lucaciu, G. Stiufiuc, A.G. Dutu, C. Braescu, N. Leopold, Nanoscale Res. Lett. 8, 47 (2013)

    Article  ADS  Google Scholar 

  2. M.P. Konrad, A.P. Doherty, S.E.J. Bell, Anal. Chem. 85, 6783 (2013)

    Article  Google Scholar 

  3. G.M. Meheretu, D. Cialla, J. Popp, Int. J. Biochem. Biophys. 2, 63 (2014)

    Google Scholar 

  4. Y. Luo, L. Ma, X. Zhang, A. Liang, Z. Jiang, Nanoscale Res. Lett. 10, 230 (2015)

    Article  ADS  Google Scholar 

  5. P.J. Rivero, A. Urrutia, J. Goicoechea, I.R. Matias, F.J. Arregui, Sens. Actuators B 187, 40 (2013)

    Article  Google Scholar 

  6. Y.K. Krutyakov, A.A. Kudrynskiy, A.Y. Olenin, G.V. Lisichkin, Russ. Chem. Rev. 77, 233 (2008)

    Article  ADS  Google Scholar 

  7. G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Molecules 20, 8856 (2015)

    Article  Google Scholar 

  8. J. Natsuki, T. Natsuki, Y. Hashimoto, Int. J. Mater. Sci. Appl. 4(5), 325 (2015)

    Google Scholar 

  9. X.-F. Zhang, Z.-G. Liu, W. Shen. S. Gurunathan, Int. J. Mol. Sci. 17, 1534 (2016)

    Article  Google Scholar 

  10. S. Chernousova, M. Epple, Angew. Chem. Int. Ed. 52, 1636 (2013)

    Article  Google Scholar 

  11. C.Y. Li, Y.J. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, Q. Wang, Biomaterials 35, 393 (2014)

    Article  Google Scholar 

  12. I. Sondi, B. Salopek-Sondi, J. Colloid Interface Sci. 275, 177 (2004)

    Article  ADS  Google Scholar 

  13. H. Sun, L. Wu, W. Wei, X. Qu, Mater. Today 16, 11 (2013)

    Article  Google Scholar 

  14. X. Yuan, Z. Liu, Z. Guo, Y. Ji, M. Jin, X. Wang, Nanoscale Res. Lett. 9, 108 (2014)

    Article  ADS  Google Scholar 

  15. M. Laurenti, M. Paez-Perez, M. Algarra, P. Alonso-Cristobal, E. Lopez-Cabarcos, D. Mendez-Gonzalez, J. Rubio-Retama, ACS Appl. Mater. Interfaces 8, 12644 (2016)

    Article  Google Scholar 

  16. A.D. Chowdhury, R.-A. Doong, ACS Appl. Mater. Interfaces 8, 21002 (2016)

    Article  Google Scholar 

  17. J. Liu, L. Qin, S.-Z. Kang, G. Li, X. Li, Mater. Des. 123, 32 (2017)

    Article  Google Scholar 

  18. R. Guo, S. Zhou, Y. Li, X. Li, L. Fan, N.H. Voelcker, ACS Appl. Mater. Interfaces 7, 23958 (2015)

    Article  Google Scholar 

  19. Y. Liu, D.Y. Kim, Chem. Commun. 51, 4176 (2015)

    Article  Google Scholar 

  20. V.K. Gupta, N. Mergu, A.K. Singh, Sens. Actutors B 220, 420 (2015)

    Article  Google Scholar 

  21. R.M.F. Batista, S.P.G. Costa, R.M.P. Silva, N.E.M. Lima, M.M.M. Raposo, Dyes Pigm. 102, 293 (2014)

    Article  Google Scholar 

  22. T.-T. Xu, J.-X. Yang, J.-M. Song, J.-S. Chen, H.-L. Niu, C.-J. Mao, S.-Y. Zhang, Y.-H. Shen, Sens. Actuators B 243, 863 (2017)

    Article  Google Scholar 

  23. Z. Huang, Y. Shen, Y. Li, W. Zheng, Y. Xue, C. Qin, B. Zhang, J. Hao, W. Feng, Nanoscale 6, 13043 (2014)

    Article  ADS  Google Scholar 

  24. S. Zhuo, M. Shao, S.-T. Lee, ACS Nano 6, 1059 (2012)

    Article  Google Scholar 

  25. E. Hwang, H.M. Hwang, Y. Shin, Y. Yoon, H. Lee, J. Yang, S. Bak, H. Lee, Sci. Rep. 6, 39448 (2016)

    Article  ADS  Google Scholar 

  26. Y. Ko, J. Shim, C.-H. Lee, K.S. Lee, H. Cho, K.-T. Lee, D.I. Son, Mater. Lett. 217, 113 (2018)

    Article  Google Scholar 

  27. J. Wang, X. Gao, H. Sun, B. Su, C. Gao, Mater. Lett. 162, 142 (2016)

    Article  Google Scholar 

  28. J. Ge, Y. Li, J. Wang, Y. Pu, W. Xue, X. Liu, J. Alloy. Compd. 663, 166e171 (2016)

    Article  Google Scholar 

  29. S. Chen, Y. Quan, Y.-L. Yu, J.-H. Wang, ACS Biomater. Sci. Eng. 3, 313 (2017)

    Article  Google Scholar 

  30. S. Chen, X. Hai, X.-W. Chen, J.-H. Wang, Anal. Chem. 86, 6689 (2014)

    Article  Google Scholar 

  31. X. Liu, Y. Li, W. Xue, J. Ge, J. Wang, J. Sun, J. Mater. Sci. Technol. 34, 679 (2018)

    Article  Google Scholar 

  32. J. Ge, Y. Li, J. Wang, Y. Pu, W. Xue, X. Liu, J. Alloy. Compd. 663, 166 (2016)

    Article  Google Scholar 

  33. N.T. Ho, H.N. Tien, S.-J. Jang, V. Senthilkumar, Y.C. Park, S. Cho, Y.S. Kim, Sci. Rep. 6, 30327 (2016)

    Article  ADS  Google Scholar 

  34. S. Chen, X. Hai, X.W. Chen, J.H. Wang, Anal. Chem. 86, 13, 6689 (2014)

    Article  Google Scholar 

  35. V. Deepak, P.S. Umamaheshwaran, K. Guhan, R.A. Nanthini, B. Krithiga, N.M. Jaithoon, S. Gurunathan, Colloid Surface B 86, 353 (2011)

    Article  Google Scholar 

  36. S. Chen, Y. Quan, Y.-L. Yu, J.-H. Wang, ACS Biomater. Sci. Eng. 3(3), 313 (2017)

    Article  Google Scholar 

  37. N. Peyghambarian, S.W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, New Jersey, 1993), pp. 53–77

    Google Scholar 

  38. J. Homola, Surface plasmon resonance based sensors (Springer, Heidelberg, 2006), pp. 26–31

    Book  Google Scholar 

  39. B. Blonder, Sensing Application of Surface Plasmon Resonance. http://www.eduprograms.seas.harvard.edu/reu05_papers/Blonder_Benjamin.pdf. Accessed 19 Aug 2005

  40. A.J. Jaaskelainen, K.E. Peiponen, J.A. Raty, J. Dairy Sci. 84, 38–43 (2001)

    Article  Google Scholar 

  41. R. Zamiri, A. Zakaria, H.A. Ahangar, A.R. Sadrolhosseini, M.A. Mahdi, Int. J. Mol. Sci. 11, 4764 (2010)

    Article  Google Scholar 

  42. W. Chen, L. Yan, P.R. Bangal, J. Phys. Chem. C 114, 19885 (2010)

    Article  Google Scholar 

  43. J. Li, H. Lin, Z. Yang, J. Li, Carbon 49, 3024 (2011)

    Article  Google Scholar 

  44. S. Stankovich, D.A. Dikin, R.D. Piner, K. A.Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)

    Article  Google Scholar 

  45. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, J. Chem. Phys. 116, 15, 6755 (2002)

    Article  ADS  Google Scholar 

  46. K.N. Kanipe, P.P.F. Chidester, G.D. Stucky, M. Moskovits, ACS Nano 10(8), 7566 (2016)

    Article  Google Scholar 

  47. L.K. Shrestha, J.S. Wi, J. Williams, M. Akada, K. Ariga, J. Nanosci. Nanotechnol. 14(3), 2245 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Reza Sadrolhosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadrolhosseini, A.R., Abdul Rashid, S., Shafie, S. et al. Laser ablation synthesis of Ag nanoparticles in graphene quantum dots aqueous solution and optical properties of nanocomposite. Appl. Phys. A 125, 82 (2019). https://doi.org/10.1007/s00339-018-2233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2233-x

Navigation