Skip to main content
Log in

Symmetry lowering and surface elasticity effects on Young’s modulus and Poisson’s ratio of nanofilms

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Physical and mechanical properties of nanosized materials and structures are strongly affected by surface effects. In this paper, a self-consistent theoretical scheme for describing the elastic properties of nanofilms was proposed. The Young’s modulus, biaxial modulus and Poisson’s ratio of nanofilms were obtained analytically with considerations of symmetry lowering, surface elasticity, elastic parameter splitting and additional elastic coefficient. Applications of present theory to elastic systems such as Si nanofilm Young’s modulus, Cu nanofilm biaxial modulus and Poisson’s ratio yield good agreement with previous calculated results. We found that Young’s modulus and Poisson’s ratio were split due to symmetry lowering, and this splitting confirms the symmetry lowering. For a nanofilm with a given thickness, Young’s modulus and biaxial modulus increase with surface elastic coefficients increase except \(c_{{12}}^{{\alpha ,s}}\). The larger positive \(c_{{12}}^{{\alpha ,s}}\) drives Young’s modulus towards smaller abnormally. The present study in this paper is envisaged to provide useful insights for the design and application of nanofilm-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Kiani, Vibrations and instability of pretensioned current-carrying nanowires acted upon by a suddenly applied three-dimensional magnetic field. Mater. Chem. Phys. 162, 531–541 (2015)

    Article  Google Scholar 

  2. K. Kiani, Stability and vibrations of double parallel current-carrying nanowires immersed in a longitudinal magnetic field. Phys. Lett. A 379, 348–360 (2015)

    Article  Google Scholar 

  3. Y. Yao, S.-H. Chen, Surface effect in the bending of nanowires. Mech. Mater. 100, 12–21 (2016)

    Article  Google Scholar 

  4. Z. Yan, Modeling of a nanoscale flexoelectric energy harvester with surface effects. Physica E 88, 125–132 (2017)

    Article  ADS  Google Scholar 

  5. J.-J. Li, K.-D. Zhu, All-optical mass sensing with coupled mechanical resonator systems. Phys. Rep. 525, 223–254 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. W.-M. Zhang, K.-M. Hu, B. Yang, Z.-K. Peng, G. Meng, Effects of surface relaxation and reconstruction on the vibration characteristics of nanobeams. J. Phys. D: Appl. Phys. 49, 165304 (2016)

    Article  ADS  Google Scholar 

  7. J.-G. Guo, Y.-P. Zhao, The size-dependent elastic properties of nanofilms with surface effects. J. Appl. Phys. 98, 274306 (2005)

    Google Scholar 

  8. J.-G. Guo, Y.-P. Zhao, The size-dependent bending elastic properties of nanobeams with surface effects. Nanotechnology 18, 295701 (2007)

    Article  Google Scholar 

  9. K. Kiani, Axial buckling analysis of a lender current-carrying nanowires acted upon by a magnetic field using the surface energy approch. J. Phys. D: Appl. Phys. 48, 245302 (2015)

    Article  ADS  Google Scholar 

  10. H. Sadeghian, J.F.L. Goosen, A. Bossche, B.J. Thijsse, F.V. Keulen, Effects of size and surface on the elasticity of silicon nanoplates: Molecular dynamics and semi-continuum approaches. Thin Solid Films 520, 391–399 (2011)

    Article  ADS  Google Scholar 

  11. R. Dingreville, J.-M. Qu, M. Cherkaoui, Surface free energy and its effect on the behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1872–1854 (2005)

    Article  MathSciNet  Google Scholar 

  12. F.H. Streitz, K. Sieradzki, R.C. Cammarata, Elastic properties of thin fcc films. Phys. Rev. B 41, 12285–12287 (1990) (R)

    Article  ADS  Google Scholar 

  13. K. Kiani, Column buckling of magnetically affected stocky nanowires carrying electric current. J Phys. Chem. solids 83, 140–151 (2015)

    Article  ADS  Google Scholar 

  14. K. Kiani, Surface and shear energy effects on vibrations of magnetically affected beam-like nanostructures carrying direct currents. Int. J Mech. Sci. 113, 221–238 (2016)

    Article  Google Scholar 

  15. K. Kiani, Elastic buckling of current-carrying double-nanowire systems immersed in a magnetic field. Acta Mech. 227, 3549–3570 (2016)

    Article  MathSciNet  Google Scholar 

  16. K. Kiani, A refined integro-surface energy-based model for vibration of magnetically actuated double-nanowire-system carrying electric current. Phys. E 86, 225–236 (2017)

    Article  Google Scholar 

  17. K. Kiani, Dynamic interactions between double current-carrying nanowires immersed in a longitudinal magnetic filed: Novel integro-surface energy-based models. Int. J Mech. Sci. 107, 98–133 (2016)

    MATH  Google Scholar 

  18. J.-G. Li, B. Narsu, G.-H. Yun, H.-Y. Yao, Elasticity theory of ultrathin nanofilms. J. Phys. D Appl. Phys. 48, 285301 (2015)

    Article  Google Scholar 

  19. H. Sadeghian, C.-K. Yang, J.F.L. Goosen, A. Bossche, U. Staufer, P.J. French, F.V. Keulen, Effects of size defects on the elasticity of silicon nanocantilevers. J. Micromech. Miroeng. 20, 064012 (2010)

    Article  Google Scholar 

  20. S.G. Nilsson, X. Borrisé, L. Montelius, Size effect on Young’s modulus of thin chromium cantilevers. Appl. Phys. Lett. 85, 3555–3557 (2004)

    Article  ADS  Google Scholar 

  21. C.-Y. Nam, P. Jaroenapibal, D. Tham, D.E. Luzzi, S. Evoy, J.E. Fischer, Diameter-dependent electromechanical properties of GaN nanowires. nano Lett. 6, 53–158 (2006)

    Article  Google Scholar 

  22. G.Y. Jing, H.L. Duan, X.M. Sun, Z.S. Zhang, J. Xu, Y.D. Li, J.X. Wang, D.P. Yu, Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Phys. Rev. B 73, 235409 (2006)

    Article  ADS  Google Scholar 

  23. E.P.S. Tan, Y. Zhu, T. Yu, L. Dai, C.H. Sow, V.B.C. Tan, C.T. Lim, Crystallinity and surface effects on Young’s modulus of CuO nanowires. Appl. Phys. Lett. 90, 163112 (2007)

    Article  ADS  Google Scholar 

  24. G. Stan, S. Krylyuk, A.V. Davydov, M. Vaudin, L.A. Bendersky, Cook, R F, Surface effects on the elastic modulus of Te nanowires. Appl. Phys. Lett. 92, 241908 (2008)

    Article  ADS  Google Scholar 

  25. C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Size dependent of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006)

    Article  ADS  Google Scholar 

  26. R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  ADS  Google Scholar 

  27. A. Ahadi, S. Melin, Size dependence of the Poisson’s ratio in single-crystal fcc cupper nanobeams. Comput. Mater. Sci. 111, 322–327 (2016)

    Article  Google Scholar 

  28. F. Hao, D.-N. Fang, Modeling of magnetoelectric effects in flexural nanobilayers: The effects of surface stress. J. Appl. Phys. 113, 104103 (2013)

    Article  ADS  Google Scholar 

  29. X. Liang, S.-L. Hu, S.-P. Shen, Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart. Mater. Struct. 23, 035020 (2014)

    Article  ADS  Google Scholar 

  30. G. Stan, C.V. Ciobanu, P.M. Parthangal, R.F. Cook, Diameter-dependent radial and tangential elastic moduli on ZnO nanowires. nano Lett 7, 3691–3697 (2007)

    Article  ADS  Google Scholar 

  31. H.-Y. Yao, G.-H. Yun, B. Narsu, J.-G. Li, Surface elasticity effect on the size-dependent elastic property of nanowires. J. Appl. Phys. 111, 083506 (2012)

    Article  ADS  Google Scholar 

  32. H.-Y. Yao, G.-H. Yun, B. Narsu, Influence of exponentially increasing surface elasticity on the piezoelectric potential of a bent ZnO nanowires. J. Phys. D: Appl. Phys. 45, 285304 (2012)

    Article  ADS  Google Scholar 

  33. du Rremolet de Lacheisserie E, Definition and measurement of the magnetoelastic coupling coefficients. Phys. Rev. B 51, 15925 (1995)

    Article  ADS  Google Scholar 

  34. du Rremolet de Lacheisserie E, Magnetostriction Theory and Applications of Magnetoelasticity (Boca Raton, FL CRC, 1993)

  35. X. Lei, B. Narsu, G.-H. Yun, J.-G. Li, H.-Y. Yao, Axial buckling transverse vibration of ultrathin nanowires: low symmetry and surface elastic effect. J. Phys. D: Appl. Phys. 49, 175305 (2016)

    Article  ADS  Google Scholar 

  36. D. Sander, The correlation between mechanical stress and mechanic anisotropy in ultrathin films. Rep. Prog. Phys. 62, 809–858 (1999)

    Article  ADS  Google Scholar 

  37. S. Izumi, S. Hara, T. Kumagai, S. Sakai, A method for calculating surface stress and surface elastic constants by molecular dynamics: application to the surface of crystal and amorphous silicon. Thin Solid Films 467, 253–260 (2004)

    Article  ADS  Google Scholar 

  38. V.B. Shenoy, Atomic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)

    Article  ADS  Google Scholar 

  39. C. Kittel, Introduction to Solid State Physics 7th edn (Wiley, New York, 1997)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China under Grant nos. 11072104, 11464037, 50901039, and 11447122, the Program for Innovative Research Team of Inner Mongolia University under Grant no. 10013-12110605, the Inner Mongolia Natural Science Foundation under Grant no. 2014BS0102. BN acknowledges support from NJYT-12-B07, and ZG acknowledges support from Higher Innovation Project of Shanxi Province under Grant No. 2015177.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangang Li or Zhixiang Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Narsu, B., Yun, G. et al. Symmetry lowering and surface elasticity effects on Young’s modulus and Poisson’s ratio of nanofilms. Appl. Phys. A 124, 813 (2018). https://doi.org/10.1007/s00339-018-2231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2231-z

Navigation