Skip to main content
Log in

Temperature and frequency effect on the electrical properties of bulk nickel phthalocyanine octacarboxylic acid (Ni-Pc(COOH)8)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The AC conductivity of nickel phthalocyanine octacarboxylic acid was investigated from 100 Hz to 1 MHz and temperature from 290 to 423 K. The AC conductivity was found to vary with frequency (σ(f)) and form two dispersion regions; the associated exponent factor “s” values were found to vary from 1.17 to 1.34 and from 0.42 to 0.67 (< 1). The value and temperature dependent of s are found in agreement with conduction mechanism models of large-polaron tunneling and the correlated barrier hopping, at the first and the second regions, respectively. The real and the imaginary parts of the dielectric constant were observed to decrease as the frequency increases indicating the pronounce contribution of low-frequency polarization mechanisms. Furthermore, the activation free energy ∆F, enthalpy ∆H, and entropy ∆S of the sample were calculated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Raïssi, S. Leroy-Lhez, B. Ratier, Enhanced photocurrent and stability of organic solar cells using solution-based TS-CuPc interfacial layer. Org. Electron. Phys. Mater. Appl. 37, 183–189 (2016). https://doi.org/10.1016/j.orgel.2016.06.030

    Article  Google Scholar 

  2. M.M. Al-Amar, K.J. Hamam, G. Mezei, R. Guda, N.M. Hamdan, C.A. Burns, A new method to improve the lifetime stability of small molecule bilayer heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells. 109, 270–274 (2013). https://doi.org/10.1016/j.solmat.2012.11.006

    Article  Google Scholar 

  3. M.M. Al-Amar, K.J. Hamam, G. Mezei, R. Guda, C.A. Burns, Stability and degradation of unencapsulated CuPc bilayer heterojunction cells under different atmospheric conditions. Sol. Energy Mater. Sol. Cells. 121, 152–156 (2014). https://doi.org/10.1016/j.solmat.2013.11.006

    Article  Google Scholar 

  4. C.L. Wu, Y. Chen, Hydroxyethyl cellulose doped with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt as an effective dual functional hole-blocking layer for polymer light-emitting diodes. Opt. Mater. (Amst). 69, 38–48 (2017). https://doi.org/10.1016/j.optmat.2017.04.004

    Article  ADS  Google Scholar 

  5. Y. Chen, Q. Wang, J. Chen, D. Ma, D. Yan, L. Wang, Organic semiconductor heterojunction as charge generation layer in tandem organic light-emitting diodes for high power efficiency. Org. Electron. Phys. Mater. Appl. 13, 1121–1128 (2012). https://doi.org/10.1016/j.orgel.2012.03.013

    Article  Google Scholar 

  6. H. Jiang, J. Ye, P. Hu, F. Wei, K. Du, N. Wang, T. Ba, S. Feng, C. Kloc, Fluorination of metal phthalocyanines: single-crystal growth, efficient N-channel organic field-effect transistors, and structure-property relationships, Sci. Rep. 4 (2014). https://doi.org/10.1038/srep07573

  7. M.E. Roberts, A.N. Sokolov, Z. Bao, Material and device considerations for organic thin-film transistor sensors. J. Mater. Chem. 19, 3351–3363 (2009). https://doi.org/10.1039/b816386c

    Article  Google Scholar 

  8. O.A. Melville, B.H. Lessard, T.P. Bender, Phthalocyanine-based organic thin-film transistors: a review of recent advances. ACS Appl. Mater. Interfaces. 7, 13105–13118 (2015). https://doi.org/10.1021/acsami.5b01718

    Article  Google Scholar 

  9. E.S. Muckley, C.B. Jacobs, K. Vidal, N.V. Lavrik, B.G. Sumpter, I.N. Ivanov, Multi-mode humidity sensing with water-soluble copper phthalocyanine for increased sensitivity and dynamic range, Sci. Rep. 7 (2017). https://doi.org/10.1038/s41598-017-10401-2

  10. J.C. Bommer, J.D. Spikes, Phthalocyanines: properties and applications. Photochem. Photobiol. 53, 419–419 (1991). https://doi.org/10.1111/j.1751-1097.1991.tb03651.x

    Article  Google Scholar 

  11. J. Nackiewicz, A. Suchan, M. Kliber, Octacarboxyphthalocyanines—compounds of interesting spectral, photochemical and catalytic properties. Chemik. 68, 373–376 (2014)

    Google Scholar 

  12. A.M. Saleh, S.M. Hraibat, R.-L. Kitaneh, M.M. Abu-Samreh, S.M. Musameh, Dielectric response and electric properties of organic semiconducting phthalocyanine thin films. J. Semicond. 33, 082002 (2012). https://doi.org/10.1088/1674-4926/33/8/082002

    Article  ADS  Google Scholar 

  13. R.M.L. Kitaneh, A.M. Saleh, R.D. Gould, Ac electrical parameters of Al-ZnPc-Al organic semiconducting films. Cent. Eur. J. Phys. 4, 87–104 (2006). https://doi.org/10.1007/s11534-005-0008-4

    Article  Google Scholar 

  14. S.M. Hraibat, R.M.L. Kitaneh, M.M. Abu- Samreh, A.M. Saleh, AC-electronic and dielectric properties of semiconducting phthalocyanine compounds: a comparative study, J. Semicond. 34 (2013). https://doi.org/10.1088/1674-4926/34/11/112001

  15. M.M. El-Nahass, A.M. Farid, K.F. Abd El-Rahman, H.A.M. Ali, Ac conductivity and dielectric properties of bulk tin phthalocyanine dichloride (SnPcCl2). Phys. B Condens. Matter. 403, 2331–2337 (2008). https://doi.org/10.1016/j.physb.2007.12.015

    Article  ADS  Google Scholar 

  16. A.A. Atta, AC conductivity and dielectric measurements of bulk magnesium phthalocyanine (MgPc). J. Alloys Compd. 480, 564–567 (2009). https://doi.org/10.1016/j.jallcom.2009.01.124

    Article  Google Scholar 

  17. I.M. Soliman, M.M. El-Nahass, Y. Mansour, Electrical, dielectric and electrochemical measurements of bulk aluminum phthalocyanine chloride (AlPcCl). Solid State Commun. 225, 17–21 (2016). https://doi.org/10.1016/j.ssc.2015.10.011

    Article  ADS  Google Scholar 

  18. G. Mezei, A.R. Venter, J.W. Kreft, A.A. Urech, N.R. Mouch, Monomeric, not tetrameric species are responsible for the colossal dielectric constant of copper phthalocyanine derived from pyromellitic dianhydride. RSC Adv. 2, 10466–10469 (2012). https://doi.org/10.1039/c2ra21634e

    Article  Google Scholar 

  19. K.J. Hamam, M.M. Al-Amar, G. Mezei, R. Guda, C. Burns, High dielectric constant response of modified copper phthalocyanine. J. Mol. Liq. 199, 324–329 (2014). https://doi.org/10.1016/j.molliq.2014.09.029

    Article  Google Scholar 

  20. V.S.P.K. Neti, J. Wang, S. Deng, L. Echegoyen, High and selective CO2 adsorption by a phthalocyanine nanoporous polymer, J. Mater. Chem. A. 3 (2015) 10284–10288. https://doi.org/10.1039/c5ta00587f.

    Article  Google Scholar 

  21. M.H. Salehi, A.R. Karimi, Novel octa-substituted metal (II) phthalocyanines bearing 2,6-di- tert -buthylphenol groups: synthesis, characterization, electronic properties, aggregation behavior and their antioxidant activities as stabilizer for polypropylene and high density polyeth. Polym. Degrad. Stab. (2018). https://doi.org/10.1016/j.polymdegradstab.2018.03.005

    Article  Google Scholar 

  22. R. Seoudi, G.S. El-Bahy, Z.A. El Sayed, FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes. J. Mol. Struct. 753, 119–126 (2005). https://doi.org/10.1016/j.molstruc.2005.06.003

    Article  ADS  Google Scholar 

  23. K. Lily, K. Kumari, R.N.P. Prasad, Choudhary, Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3lead-free ceramic. J. Alloys Compd. 453, 325–331 (2008). https://doi.org/10.1016/j.jallcom.2006.11.081

    Article  Google Scholar 

  24. A. Kumar, N.M. Murari, R.S. Katiyar, Investigation of dielectric and electrical behavior in Pb(Fe0.66W0.33)0.50Ti0.50O3thin films by impedance spectroscopy. J. Alloys Compd. 469, 433–440 (2009). https://doi.org/10.1016/j.jallcom.2008.01.130

    Article  Google Scholar 

  25. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, Hoboken, 2005), Applications of Impedance Spectroscopy, pp. 232–258. https://doi.org/10.1002/0471716243

    Book  Google Scholar 

  26. F. Salman, R. Khalil, H. Hazaa, Impedance measurements of some silver ferro-phosphate glasses. Adv. Mater. Lett. 7, 593–598 (2016). https://doi.org/10.5185/amlett.2016.6175

    Article  Google Scholar 

  27. A.K. Jonscher, Dielectric relaxation in solids, J. Phys. D Appl. Phys. 32 (1999). https://doi.org/10.1088/0022-3727/32/14/201

  28. K.C. Kao, Dielectric phenomena in solids (Elsevier, London, 2004), Electrical Conduction and Photoconduction, p. 381. https://doi.org/10.1016/B978-0-12-396561-5.X5010-5

    Book  Google Scholar 

  29. K. Funke, Jump relaxation in solid ionic conductors, Solid State Ionics. 28–30 (1988) 100–107. https://doi.org/10.1016/S0167-2738(88)80015-8

  30. K. Funke, Jump relaxation model and coupling model—a comparison, J. Non. Cryst. Solids. 172–174 (1994) 1215–1221. https://doi.org/10.1016/0022-3093(94)90646-7

  31. V. Bobnar, A. Levstik, C. Huang, Q.M. Zhang, Intrinsic dielectric properties and charge transport in oligomers of organic semiconductor copper phthalocyanine, Phys. Rev. B Condens. Matter Mater. Phys. 71 (2005). https://doi.org/10.1103/PhysRevB.71.041202

  32. M. Gou, X. Yan, Y. Kwon, T. Hayakawa, M.A. Kakimoto, T. Goodson, High frequency dielectric response in a branched phthalocyanine. J. Am. Chem. Soc. 128, 14820–14821 (2006). https://doi.org/10.1021/ja063796w

    Article  Google Scholar 

  33. Y.A. Vidadi, L.D. Rozenshtein, E.A. Christyakov, Hopping and band conductivities in organic semiconductors. Sov. Phys. Solid State 11, 173–175 (1969)

    Google Scholar 

  34. M.M. EL-Nahass, A.F. EL-Deeb, F. Abd-El-Salam, Influence of temperature and frequency on the electrical conductivity and the dielectric properties of nickel phthalocyanine. Org. Electron. Phys. Mater. Appl. 7, 261–270 (2006). https://doi.org/10.1016/j.orgel.2006.03.007

    Article  Google Scholar 

  35. S.K. Arya, S.S. Danewalia, K. Singh, Frequency independent low-: K lithium borate nanocrystalline glass ceramic and glasses for microelectronic applications. J. Mater. Chem. C. 4, 3328–3336 (2016). https://doi.org/10.1039/c5tc03364k

    Article  Google Scholar 

  36. T.G.A. Malik, M.E. Kassεµb, N.S. Alyc, S.M. Kηalil, AC conductivity of cobalt phthalocyanine. Acta Phys. Pol. A. 81, 675–680 (1992). https://doi.org/10.12693/APhysPolA.81.675

    Article  Google Scholar 

  37. S.A. James, A.K. Ray, J. Silver, Dielectric and optical studies of sublimed MoOPc films. Phys. Status Solidi. 129, 435–441 (1992). https://doi.org/10.1002/pssa.2211290213

    Article  ADS  Google Scholar 

  38. S. Murugavel, M. Upadhyay, A.C. conduction in amorphous semiconductors. J. Indian Inst. Sci. 91, 303–317 (2011). https://doi.org/10.1080/00018738700101971

    Article  Google Scholar 

  39. A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982). https://doi.org/10.1080/00018738200101418

    Article  ADS  Google Scholar 

  40. M. Pollak, T.H. Geballe, Low-frequency conductivity due to hopping processes in silicon. Phys. Rev. 122, 1742–1753 (1961). https://doi.org/10.1103/PhysRev.122.1742

    Article  ADS  Google Scholar 

  41. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 50, 757–812 (2001). https://doi.org/10.1080/00018730110103249

    Article  ADS  Google Scholar 

  42. A.R. Long, N. Balkan, W.R. Hogg, R.P. Ferrier, A.C. loss in sputtered hydrogenated amorphous germanium measurements at around liquid-nitrogen temperatures. Philos. Mag. B. 45, 497–518 (1982). https://doi.org/10.1080/13642818208246415

    Article  ADS  Google Scholar 

  43. M.M. Abdel-Kader, M.A.F. Basha, G.H. Ramzy, A.I. Aboud, Thermal and ac electrical properties of N-methylanthranilic acid below room temperature. J. Phys. Chem. Solids 117, 13–20 (2018). https://doi.org/10.1016/j.jpcs.2018.02.007

    Article  ADS  Google Scholar 

  44. D.P. Almond, G.K. Duncan, A.R. West, The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ionics. 8, 159–164 (1983). https://doi.org/10.1016/0167-2738(83)90079-6

    Article  Google Scholar 

  45. M.D. Earle, Electrons and holes in semiconductors. J. Franklin Inst. 252, 95 (1951). https://doi.org/10.1016/0016-0032(51)91102-7

    Article  Google Scholar 

  46. R.G. Chambers, The free-electron model, in Electronics in Metals and Semiconductors. Physics and its Application, 1st edn. (Springer, New Delhi, 1990). https://doi.org/10.1007/978-94-009-0423-1_1

    Chapter  Google Scholar 

  47. B. Köksoy, M. Aygün, A. Çapkin, F. Dumludağ, M. Bulut, Electrical and gas sensing properties of novel cobalt(II), copper(II), manganese(III) phthalocyanines carrying ethyl 7-oxy-4,8-dimethylcoumarin-3-propanoate moieties. J. Porphyr. Phthalocyanines. (2018). https://doi.org/10.1142/S1088424618500153

    Article  Google Scholar 

  48. E. Yabaş, M. Sülü, F. Dumludag, A.R. Özkaya, B. Salih, Ö Bekaroglu, Electrical and electrochemical properties of double-decker Lu(III) and Eu(III) phthalocyanines with four imidazoles and N-alkylated imidazoles. Polyhedron. 42, 195–205 (2012). https://doi.org/10.1016/j.poly.2012.05.020

    Article  Google Scholar 

  49. P.B. Macedo, C.T. Moynihan, R. Bose, Role of Ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glas. 13, 171–179 (1972). https://doi.org/10.4236/ns.2014.66038

    Article  Google Scholar 

  50. S. Glasstone, K.J. Laidler, H. Eyring, The Theory of Rate Processes: The Kinetics of I Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, 1st edn. (McGraw-Hill, New York, 1941), pp. 13–15, https://doi.org/10.1038/149509a0 (introduction)

    Book  Google Scholar 

  51. H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936). https://doi.org/10.1063/1.1749836

    Article  ADS  Google Scholar 

  52. K.K. Srivastava, A. Kumar, O.S. Panwar, K.N. Lakshminarayan, Dielectric relaxation study of chalcogenide glasses. J. Non. Cryst. Solids. 33, 205–224 (1979). https://doi.org/10.1016/0022-3093(79)90050-4

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Gellert Mezei would like to acknowledge the donors of the American Chemical Society Petroleum Research Fund (ACS PRF) for their generous support of this research under Grant number 52907-ND10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil J. Hamam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 7459 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamam, K.J., Mezei, G., Khattari, Z. et al. Temperature and frequency effect on the electrical properties of bulk nickel phthalocyanine octacarboxylic acid (Ni-Pc(COOH)8). Appl. Phys. A 125, 7 (2019). https://doi.org/10.1007/s00339-018-2147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2147-7

Navigation