Skip to main content
Log in

A comparative study on structure and electrical properties of antimony ferrite and bismuth ferrite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Low magnetic property is one of the major disadvantages of bismuth ferrite which limits its industrial utility. We have substituted bismuth from bismuth ferrite by antimony to solve the limitations of the material. Polycrystalline samples of SbFeO3 and BiFeO3 are prepared by solid-state reaction technique. Crystal structure investigation of both the compounds are carried out by X-ray diffraction (XRD). The crystallite sizes obtained from XRD data are 49 nm for SbFeO3 and 62 nm for BiFeO3. The impedance and dielectric studies of the materials are carried out at various frequency (102–106 Hz) in a wide temperature range (30–475 °C). Dc conductivity and ac conductivity of both the materials are explained by Arrhenius relation and Jonscher’s universal power law, respectively. Leakage current of SbFeO3 is found to be large compared to BiFeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Li, C. Wang, W.L.M. Ye, N. Wang, J. Mater. Lett. 90, 45 (2013)

    Article  Google Scholar 

  2. K.S. Nalwa, A. Garg, A. Upadhyayaet, Mater. Lett. 62, 878 (2008)

    Article  Google Scholar 

  3. R. Rai, A.L. Kholkin, S. Sharma, J. Alloys Compd. 506, 815 (2010)

    Article  Google Scholar 

  4. N.V. Minh, N.G. Quan, J. Alloys Compd. 509, 2663 (2011)

    Article  Google Scholar 

  5. A. Kumar, N.M. Murari, R.S. Katiyar, J. Raman Spectrosc. 39, 1262 (2008)

    Article  ADS  Google Scholar 

  6. A. Ablat, E. Wu, M. Mamat, J. Li, E. Muhemmed, C. Si, R. Wu, J. Wang, H. Qian, K. Ibrahim, Ceram. Int. 40, 14083 (2014)

    Article  Google Scholar 

  7. A. Chaudhuri, K. Mandal, J. Magn. Magn. Mater. 353, 57 (2014)

    Article  ADS  Google Scholar 

  8. P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, J. Phys. Chem. Solids 75, 105 (2014)

    Article  ADS  Google Scholar 

  9. L.V. Costa, R.C. Deus, C.R. Foschini, E. Longo, M. Cilense, A.Z. Simões, Mater. Chem. Phys. 144, 476 (2014)

    Article  Google Scholar 

  10. E. Wu, POWD, an Interactive Powder Diffraction Data Interpretation and Indexing Program V. 2.1. School of Physical Sciences, Flinder University of South Australia, Bedford Park

  11. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974)

    MATH  Google Scholar 

  12. A.M. Glazer, Acta Cryst. A 31, 756 (1975)

    Article  Google Scholar 

  13. S. Pattanayak, R.N.P. Choudhary, P.R. Das, J. Mater. Sci. Mater. Electron. 24, 2767 (2013)

    Article  Google Scholar 

  14. S. Ahmed, S.K. Barik, Ceram. Int. 42, 5659 (2016)

    Article  Google Scholar 

  15. S. Godara, B. Kumar, Ceram. Int. 42, 1782 (2016)

    Article  Google Scholar 

  16. S. Verma, J. chand, M. Singh, J. Alloys Compd. 587, 763 (2014)

    Article  Google Scholar 

  17. L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990)

    Google Scholar 

  18. X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Alloys. Compd. 603, 224 (2014)

    Article  Google Scholar 

  19. J. Wu, J. Wang, D. Xiao, J. Zhu, J. Appl. Phys. 110, 064104 (2011)

    Article  ADS  Google Scholar 

  20. S. Pattanayak, A. Priyadarshan, R. Subudhi, R.K. Nayak, R. Padhee, J. Adv. Ceram. 2(3), 235 (2013)

    Article  Google Scholar 

  21. S. Sen, R.N.P. Choudhary, A. Tarafdar, P. Pramanik, J. Appl. Phys. 99, 124114 (2006)

    Article  ADS  Google Scholar 

  22. R. Ranjan, R. Kumar, B. Behera, R.N.P. Choudhary, Phys. B 404, 3709 (2009)

    Article  ADS  Google Scholar 

  23. S.K. Barik, R.N.P. Choudhary, P.K. Mahapatra, J. Alloys. Compd. 459, 35 (2008)

    Article  Google Scholar 

  24. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)

    Article  ADS  Google Scholar 

  25. S.S.N. Bharadwaja, S.B. Krupanidhi, J. Appl. Phys. 86, 5862 (1999)

    Article  ADS  Google Scholar 

  26. S. Ahmed, S.K. Barik, J. Alloys. Compd. 626, 292 (2015)

    Article  Google Scholar 

  27. R.C. Da, Y. Guo, Yan, Electron. Elem. Mater. 1, 25 (1982)

    Google Scholar 

  28. C. Tian, S.W. Chan, J. Am. Ceram. Soc. 5, 2222 (2002)

    Article  Google Scholar 

  29. J. Wu, J. Wang, J. Am. Ceram. Soc. 93(9), 2795 (2010)

    Article  Google Scholar 

  30. C.K. Suman, K. Prasad, R.N.P. Choudhary, Mater. Chem. Phys. 97, 425 (2006)

    Article  Google Scholar 

  31. B.C. Sutar, R.N.P. Choudhary, P.R. Das, Ceram. Int. 40, 7791 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks to AICTE for sanctioning the project [no.: 8023/RID/RPS-32/(POLICY-III)(NER)/2011-12] for experimental support and Mr. Suhel Ahmed thanks the Ministry of Minority Affairs (MoMA), Government of India and University Grant Commission (UGC), New Delhi (F1-17.1/2013-14/MANF-2013-14-MUS-ASS-202128/(SA-III/Website)) for financial assistance under the Maulana Azad National Senior Research Fellowship (MANSRF) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrat Kumar Barik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Barik, S.K. & Barik, S.K. A comparative study on structure and electrical properties of antimony ferrite and bismuth ferrite. Appl. Phys. A 124, 523 (2018). https://doi.org/10.1007/s00339-018-1900-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1900-2

Navigation