Skip to main content

Advertisement

Log in

Synthesis of bismuth titanate (BTO) nanopowder and fabrication of microstrip rectangular patch antenna

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The bismuth titanate (Bi4Ti3O12) or BTO nanopowder was synthesized from the combustion method and fabricated a microstrip rectangular patch antenna (MPA). The crystal structure and lattice spacing of BTO were evaluated from XRD, TEM, and SAED analysis. The crystal structure of BTO (annealed at 900 °C) was observed to be the orthorhombic phase with fcc lattice. The microstructure of BTO nanoparticles was confirmed the spherical and hexagonal shapes, which were slightly agglomerated due to the lack of stabilizing surfactants. The presence of weak and wide bands in Raman spectrum quantified the mechanical compressions to the uniform directions of elongated lattice constants and tensions to the lattice constriction of crystalline bismuth titanate. To fabricate the MPA, pellets of BTO nanopowder were prepared by applying the uniaxial pressure in the dimension of 1.5 mm thickness and 8 mm diameter. These pellets were formed a densely packed structure close to the theoretical density. The coercivity and remanence polarization of BTO ceramics increased as the applied field increased. The inexpensive combustion synthesis method of BTO nanopowder showed the high dielectric constant (ε′ = 450) and low dielectric loss (tanδ = 0.98), which has a potential implication of the cost-effectiveness in the field of miniaturized microelectronics. The synthesis and measurements of BTO ceramics are found to be suitable for wireless communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Kai-Fong, J. Atmos. Terr. Phys. 51, 811 (1989)

    Article  ADS  Google Scholar 

  2. K. Mandal, P.P. Sarkar, AEU: Int. J. Electron. Commun. 67, 1010 (2013)

    Google Scholar 

  3. R. Jothi Chitra, V. Nagarajan, Comput. Electr. Eng. 39, 1026 (2013)

    Article  Google Scholar 

  4. S.S. Rajput et al., Ceram. Int. 38, 2355 (2012)

    Article  Google Scholar 

  5. W. Fwen Hoon et al., IEEE Trans. Antennas Propag. 60, 6032 (2012)

    Article  Google Scholar 

  6. L. Singh et al., Appl. Phys. A 112, 891 (2013)

    Article  ADS  Google Scholar 

  7. B. Jaffe, W.R. Cook, H.L. Jaffe, Piezoelectric Ceramics (Academic Press, Cambridge, 1971)

    Google Scholar 

  8. D. Chakravarty et al., J. Alloys Compd. 438, 253 (2007)

    Article  Google Scholar 

  9. J. Wei et al., Int. J. Photoenergy 2012, 8 (2012)

    Article  Google Scholar 

  10. T. Jardiel, A.C. Caballero, M. Villegas, J. Ceram. Soc. Jpn. 116, 511 (2008)

    Article  Google Scholar 

  11. Z. Lazarević et al., J. Alloys Compd. 453, 499 (2008)

    Article  Google Scholar 

  12. M.E. Mendoza, F. Donado, J.L. Carrillo, J. Phys. Chem. Solids 64, 2157 (2003)

    Article  ADS  Google Scholar 

  13. J. Hou et al., J. Nanopart. Res. 12, 563 (2010)

    Article  Google Scholar 

  14. Z. Lazarević, B.D. Stojanović, J.A. Varela, Sci. Sinter. 37, 199 (2005). doi:10.2298/SOS0503199L

    Article  Google Scholar 

  15. V.V. Srdić, Direct Synthesis of Nanocrystalline Oxide Powders by Wet-Chemical Techniques (University of Novi Sad, Novi Sad, 2010)

    Google Scholar 

  16. Q. Yang et al., J. Eur. Ceram. Soc. 23, 161 (2003)

    Article  Google Scholar 

  17. Y. Kan et al., Mater. Lett. 56, 910 (2002)

    Article  Google Scholar 

  18. J.-C. M’Peko et al., Mater. Lett. 32, 33 (1997)

    Article  Google Scholar 

  19. E.C. Subbarao, Phys. Rev. 123, 2202 (1961)

    Article  ADS  Google Scholar 

  20. Z.S. Macedo, A.C. Hernandes, Cerâmica 46, 196 (2000)

    Article  Google Scholar 

  21. P. Pookmanee, P. Uriwilast, S. Phanichpant, Ceram. Int. 30, 1913 (2004)

    Article  Google Scholar 

  22. J.P. Singh et al., J. Alloys Compd. 572, 84 (2013)

    Article  ADS  Google Scholar 

  23. R.A. Golda, A. Marikani, D.P. Padiyan, Ceram. Int. 37, 3731 (2011)

    Article  Google Scholar 

  24. R.C. Oliveira et al., J. Alloys Compd. 478, 661 (2009)

    Article  Google Scholar 

  25. W.L. Liu et al., J. Solid State Chem. 177, 3021 (2004)

    Article  ADS  Google Scholar 

  26. W.L. Liu et al., J. Cryst. Growth 264, 351 (2004)

    Article  ADS  Google Scholar 

  27. C.R. Foschini et al., J. Alloys Compd. 574, 604 (2013)

    Article  Google Scholar 

  28. A.Z. Simões et al., Mater. Lett. 61, 588 (2007)

    Article  Google Scholar 

  29. R. Sharma, P. Pahuja, R.P. Tandon, Ceram. Int. 40, 9027 (2014)

    Article  Google Scholar 

  30. Z. Khan, M. Zulfequar, M.S. Khan, Bull. Mater. Sci. 35, 169 (2012)

    Article  Google Scholar 

  31. A.K. Dubey et al., J. Alloys Compd. 509, 3899 (2011)

    Article  Google Scholar 

  32. N.M. Alford, S.J. Penn, J. Appl. Phys. 80, 5895 (1996)

    Article  ADS  Google Scholar 

  33. M.D. Rahaman et al., J. Magn. Magn. Mater. 385, 418 (2015)

    Article  ADS  Google Scholar 

  34. K. Ulutas, D. Deger, S. Yakut, J. Phys. 417, 012040 (2013)

    Google Scholar 

  35. M.-R. Hsu, K.-L. Wong, Microw. Opt. Technol. Lett. 51, 543 (2009)

    Article  Google Scholar 

  36. S.-C. Chen, K.-L. Wong, Microw. Opt. Technol. Lett. 52, 2603 (2010)

    Article  Google Scholar 

  37. C.-H. Wu, K.-L. Wong, Microw. Opt. Technol. Lett. 50, 35 (2008)

    Article  Google Scholar 

  38. L. Yue et al., IEEE Antennas Wirel. Propag. Lett. 10, 1162 (2011)

    Article  Google Scholar 

  39. M. Samsuzzaman, M.T. Islam, Sci. World J. 2014, 11 (2014)

    Google Scholar 

  40. T.A. Denidni, M.A. Habib, Electronics Letters (Institution of Engineering and Technology, Stevenage, 2006), p. 135

    Google Scholar 

  41. H.Y. Wei, J. Rykowski, S. Dixit, WiFi, WiMAX and LTE Multi-hop Mesh Networks: Basic Communication Protocols and Application Areas (Wiley, New York, 2013)

    Book  Google Scholar 

Download references

Acknowledgements

The Directorate of Extramural Research and Intellectual Property Rights (ER & IPR), Defence Research and Development Organization (DRDO), New Delhi, is acknowledged for the financial support (Project No. ERIP/ER/1104613/M/01/1460). The authors are also thankful to Thiru. A. Tenzing, Correspondent, and Dr. S. Arivazhagan, Principal, Mepco Schlenk Engineering College, Sivakasi, for their constant support and encouragement. We thank the UGC-DAE-CSR, Indore, for dielectric characterization of the sample. This research was supported by the Basic Science Research Programs (NRF-2013R1A1A2059900 and 2016R1A6A1A03012877), funded by the Ministry of Education (MoE) of the Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiruramanathan, P., Sharma, S.K., Sankar, S. et al. Synthesis of bismuth titanate (BTO) nanopowder and fabrication of microstrip rectangular patch antenna. Appl. Phys. A 122, 1006 (2016). https://doi.org/10.1007/s00339-016-0549-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0549-y

Keywords

Navigation