Skip to main content
Log in

MD simulation of effect of crystal orientations and substrate temperature on growth of Cu/Ni bilayer films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We prepare Cu/Ni bilayer films by depositing the incident atoms on Cu substrates with various surface orientations and under different temperatures and investigate interfacial structure, surface roughness, radial distribution function and hardness of the films. We find that the incident atoms can penetrate (001) substrate more easily than other surfaces, resulting in a transitional layer consisting of two kinds of atoms. Stacking faults are generated in the bilayer films deposited on the (111) substrate, which can reduce misfit strain and thus account for the layer growth mode of the films. The surface roughness decreases with the increase in deposition temperature. Moreover, we also find that a certain degree of roughness benefits the formation of coherent interface due to the tilted-layer epitaxial growth. The hardness differs for the films deposited at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.C. Cammarata, T.E. Schlesinger, C. Kim, S.B. Qadri, A.S. Edelstein, Appl. Phys. Lett. 56, 1862 (1990)

    Article  ADS  Google Scholar 

  2. F.L. Shan, Z.M. Gao, Y.M. Wang, Thin Solid Films 324, 162–164 (1998)

    Article  ADS  Google Scholar 

  3. H.C. Barshilia, K.S. Rajam, Surf. Coat. Technol. 155, 195–202 (2002)

    Article  Google Scholar 

  4. S.K. Ghosh, P.K. Limaye, B.P. Swain, N.L. Soni, R.G. Agrawal, R.O. Dusane, A.K. Grover, Surf. Coat. Technol. 201, 4609–4618 (2007)

    Article  Google Scholar 

  5. X.Y. Zhu, X.J. Liu, R.L. Zong, F. Zeng, F. Pan, Mater. Sci. Eng. A 527, 1243–1248 (2010)

    Article  Google Scholar 

  6. C.T. Wang, S.R. Jian, J.S.C. Jang, Y.S. Lai, P.F. Yang, Appl. Surf. Sci. 255, 3240–3250 (2008)

    Article  ADS  Google Scholar 

  7. T. Li, T. Liu, H. Wei, S. Hussain, J. Wang, W. Zeng, X. Peng, Z. Wang, Appl. Surf. Sci. 355, 1132–1135 (2015)

    Article  ADS  Google Scholar 

  8. R.S. Dutta, A. Arya, C. Yusufali, B. Vishwanadh, R. Tewari, G.K. Dey, Surf. Coat. Technol. 235, 741–747 (2013)

    Article  Google Scholar 

  9. B. Alling, A. Karimi, I.A. Abrikosov, Surf. Coat. Technol. 203, 883–886 (2008)

    Article  Google Scholar 

  10. T. Fu, X. Peng, Y. Zhao, C. Feng, S. Tang, N. Hu, Z. Wang, Phys. E 69, 224–231 (2015)

    Article  Google Scholar 

  11. T. Fu, X. Peng, C. Huang, D. Yin, Q. Li, Z. Wang, Appl. Surf. Sci. 357, 643–650 (2015)

    Article  ADS  Google Scholar 

  12. T. Fu, X. Peng, Y. Zhao, R. Sun, S. Weng, C. Feng, Z. Wang, Ceram. Int. 41, 14078–14086 (2015)

    Article  Google Scholar 

  13. T. Fu, X. Peng, Y. Zhao, R. Sun, D. Yin, N. Hu, Z. Wang, RSC Adv. 5, 77831–77838 (2015)

    Article  Google Scholar 

  14. T. Fu, X. Peng, C. Feng, Y. Zhao, Z. Wang, Appl. Surf. Sci. 356, 651–658 (2015)

    Article  Google Scholar 

  15. V. Dupont, F. Sansoz, J. Mater. Res. 24, 948–956 (2011)

    Article  ADS  Google Scholar 

  16. W.-Y. Chang, T.-H. Fang, S.-J. Lin, J.-J. Huang, Mol. Simul. 36, 815–822 (2010)

    Article  Google Scholar 

  17. C. Begau, A. Hartmaier, E.P. George, G.M. Pharr, Acta Mater. 59, 934–942 (2011)

    Article  Google Scholar 

  18. D. Saraev, R. Miller, Acta Mater. 54, 33–45 (2006)

    Article  Google Scholar 

  19. M. Imran, F. Hussain, M. Rashid, S.A. Ahmad, Chin. Phys. B 21, 126802 (2012)

    Article  Google Scholar 

  20. M.C. Benoudia, F. Gao, J.M. Roussel, S. Labat, M. Gailhanou, O. Thomas, D.L. Beke, Z. Erdélyi, G. Langer, A. Csik, M. Kis-Varga, Phys. Rev. B 85, 235404 (2012)

    Article  ADS  Google Scholar 

  21. G.J. Tucker, S.M. Foiles, Mater. Sci. Eng., A 571, 207–214 (2013)

    Article  Google Scholar 

  22. S.-F. Hwang, Y.-H. Li, Z.-H. Hong, Comput. Mater. Sci. 56, 85–94 (2012)

    Article  Google Scholar 

  23. J. Zhang, C. Liu, J. Fan, Appl. Surf. Sci. 276, 417–423 (2013)

    Article  ADS  Google Scholar 

  24. Z.-H. Hong, S.-F. Hwang, T.-H. Fang, Comput. Mater. Sci. 41, 70–77 (2007)

    Article  Google Scholar 

  25. S.-J. Lin, C.-D. Wu, T.-H. Fang, G.-H. Chen, Appl. Surf. Sci. 258, 5892–5897 (2012)

    Article  ADS  Google Scholar 

  26. M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285–1288 (1983)

    Article  ADS  Google Scholar 

  27. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443–6453 (1984)

    Article  ADS  Google Scholar 

  28. X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Phys. Rev. B 69, 144113 (2004)

    Article  ADS  Google Scholar 

  29. S. Shao, S.N. Medyanik, Mech. Res. Commun. 37, 315–319 (2010)

    Article  Google Scholar 

  30. S. Shao, H.M. Zbib, I. Mastorakos, D.F. Bahr, J. Eng. Mater. Technol. 135, 021001 (2013)

    Article  Google Scholar 

  31. X.W. Zhou, H.N.G. Wadley, J. Appl. Phys. 87, 553 (2000)

    Article  ADS  Google Scholar 

  32. S.-G. Lee, Y.-C. Chung, Appl. Surf. Sci. 253, 8896–8900 (2007)

    Article  ADS  Google Scholar 

  33. T. Zientarski, D. Chocyk, Thin Solid Films 562, 347–352 (2014)

    Article  ADS  Google Scholar 

  34. T. Schneider, E. Stoll, Phys. Rev. B 17, 1302–1322 (1978)

    Article  ADS  Google Scholar 

  35. T. Zientarski, D. Chocyk, Appl. Surf. Sci. 306, 56–59 (2014)

    Article  Google Scholar 

  36. Z.-H. Hong, S.-F. Hwang, T.-H. Fang, J. Appl. Phys. 103, 124313 (2008)

    Article  ADS  Google Scholar 

  37. F.C. Nix, D. MacNair, Phys. Rev. 60, 597–605 (1941)

    Article  ADS  Google Scholar 

  38. M. Ohring, Chapter 7—substrate surfaces and thin-film nucleation, in Materials Science of Thin Films, 2nd edn., ed. by M. Ohring (Academic Press, San Diego, 2002), pp. 357–415

    Chapter  Google Scholar 

  39. G.J. Ackland, A.P. Jones, Phys. Rev. B 73, 054104 (2006)

    Article  ADS  Google Scholar 

  40. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 20, 045021 (2012)

    Article  ADS  Google Scholar 

  41. F. Riesz, Vacuum 46, 1021–1023 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports from the National Natural Science Foundation of China (Grant nos. 11332013, 11272364), the Scientific Research (B) (Grant no. 15H04114), the Challenging Exploratory Research (Grant no. 15K14117), the JSPS and CAS under Japan–China Scientific Cooperation Program, the Shorai Foundation for Science and Technology, and the Chongqing Research Program of Basic Research and Frontier Technology (Grant no. cstc2015jcyjA50008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianghe Peng or Zhongchang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Peng, X., Zhao, Y. et al. MD simulation of effect of crystal orientations and substrate temperature on growth of Cu/Ni bilayer films. Appl. Phys. A 122, 67 (2016). https://doi.org/10.1007/s00339-015-9592-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9592-3

Keywords

Navigation