Skip to main content

Advertisement

Log in

Electrodeposition of cerium oxide on porous silicon via anodization and enhancement of photoluminescence

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A porous Si/cerium oxide composite (PSi/CeO2) was synthesized by electrodeposition of CeO2 via anodic oxidation on PSi. The PSi photoluminescence (PL) was enhanced. The anodically oxidized PSi substrates in HF solution had macropores (diameter 2 μm), mesopores (diameter 15 nm), and micropores (diameter less than 4 nm). Emission at 700 nm from microporous PSi (microPSi) was observed under ultraviolet irradiation. Transmission electron microscopy showed that in microPSi/CeO2, the oxide was infiltrated into microPSi by anodization. The deposited amount of CeO2 depended on the reaction time, applied voltage, temperature, and reaction species concentrations in anodization. Emission by microPSi/CeO2 at 650 nm was observed; the PL intensity was higher (about 10–30 times) than that of PSi because of energy transfer from CeO2 to nanosized Si in porous layers produced by HF etching. The lifetime of the PL of microPSi/CeO2 was longer than that of microPSi. Excitation spectra of microPSi/CeO2 at 650 nm and diffuse-reflectance spectra showed that the excitation peak for microPSi/CeO2 was similar to the absorbance of CeO2, and excitation of microPSi/CeO2 gave two peaks, at 3.7 and 4.4 eV; these peaks originated from the absorptions of CeO2 and Si nanocrystals. The PL of PSi was enhanced in microPSi/CeO2 because of efficient energy transfer from CeO2 to the Si nanocrystal.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Noguchi, T. Kondo, K. Murakoshi, K. Usaki, J. Electrochem. Soc. 146, 4166 (1999)

    Article  Google Scholar 

  2. J.P. Proot, C. Delerue, G. Allan, Appl. Phys. Lett. 61, 1948 (1992)

    Article  ADS  Google Scholar 

  3. A.L. Stroyuk, A.I. Kryukov, S.Y. Kuchmii, V.D. Pokhodenko, Theor. Exp. Chem. 41, 67 (2005)

    Article  Google Scholar 

  4. M.N. Kavalenka, C.C. Striemer, J.-P.S. DesOrmeaux, J.L. McGrath, P.M. Fauchet, Sens. Actuators, B 162, 22 (2012)

    Article  Google Scholar 

  5. S. Li, W. Ma, Y. Zhou, Y. Wang, W. Li, X. Chen, Appl. Surf. Sci. 258, 5538 (2012)

    Article  ADS  Google Scholar 

  6. T. Hutter, I. Presiado, S. Ruschin, D. Huppert, J. Phys. Chem. C 114, 2341 (2003)

    Article  Google Scholar 

  7. G. Hu, S.Q. Li, H. Gong, Y. Zhao, J. Zhang, T.L. Sudesh, L. Wijesinghe, D.J. Blackwood, J. Phys. Chem. C 113, 751 (2009)

    Article  Google Scholar 

  8. J. Rong, C. Masarapu, J. Ni, Z. Zhang, B. Wei, ACS Nano 4, 4683 (2010)

    Article  Google Scholar 

  9. W.-Q. Han, W. Wen, J.C. Hanson, X. Teng, N. Marinkovic, J.A. Rodriguez, J. Phys. Chem. C 113, 21949 (2009)

    Article  Google Scholar 

  10. S. Iwamura, H. Nishihara, T. Kyotani, J. Phys. Chem. C 116, 6004 (2012)

    Article  Google Scholar 

  11. V. Lehmann, R. Stengl, A. Luigart, Mater. Sci. Eng. B69–70, 11 (2000)

    Article  Google Scholar 

  12. V. Parkhutik, Solid-State Electron. 43, 1121 (1993)

    Article  ADS  Google Scholar 

  13. F. Ronkel, J.W. Schultze, J. Porous Mater. 7, 11 (2000)

    Article  Google Scholar 

  14. A.G. Cullis, L.T. Canham, P.D.J. Calcott, Appl. Phys. Rev. 82, 910 (1997)

    Article  ADS  Google Scholar 

  15. W. Theiβ, Surf. Sci. Rep. 29, 91 (1997)

    Article  ADS  Google Scholar 

  16. V. Kochergin, H. Foell, Mater. Sci. Eng., R 52, 93 (2006)

    Article  Google Scholar 

  17. V. Lehmann, Appl. Surf. Sci. 106, 402 (2000)

    Article  ADS  Google Scholar 

  18. V. Lehmann, Mater. Lett. 28, 245 (1996)

    Article  Google Scholar 

  19. F. Müller, A. Birner, U. Gösele, V. Lehmann, S. Ottow, H. Föll, J. Porous Mater. 7, 201 (2000)

    Article  Google Scholar 

  20. E. Foca, J. Carstensen, H. Föll, J. Electroanal. Chem. 603, 175 (2007)

    Article  Google Scholar 

  21. T. Tamura, A. Aisyah, S. Adachi, J. Electrochem. Soc. 156, K173 (2009)

    Article  Google Scholar 

  22. S. Yang, W. Li, B. Cao, H. Zeng, W. Cai, J. Phys. Chem. C 115, 21056 (2011)

    Article  Google Scholar 

  23. L. Brus, J. Phys. Chem. 98, 3575 (1994)

    Article  Google Scholar 

  24. L.E. Brus, P.F. Szajowski, W.L. Wilson, T.D. Harris, S. Schuppler, P.H. Citrin, J. Am. Chem. Soc. 117, 2915 (1995)

    Article  Google Scholar 

  25. T. Takagahara, J. Lumin. 70, 129 (1996)

    Article  Google Scholar 

  26. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing, Appl. Phys. Lett. 80, 661 (2002)

    Article  ADS  Google Scholar 

  27. R. Guerra, S. Ossicini, Phys. Rev. B 81, 245307 (2010)

    Article  ADS  Google Scholar 

  28. M.M. Das, M. Ray, N.R. Bandyopadhyay, S.M. Hossain, Mater. Chem. Phys. 119, 524 (2010)

    Article  Google Scholar 

  29. E.P. O’Reilly, J. Robertson, Phys. Rev. B 27, 3780 (1983)

    Article  ADS  Google Scholar 

  30. P.D.J. Calcott, K.J. Nash, L.T. Canham, D. Brumhead, J. Lumin. 57, 257 (1993)

    Article  Google Scholar 

  31. S. Schuppler, S.L. Friedman, M.A. Marcus, D.L. Adler, Y.-H. Xie, F.M. Ross, Y.J. Chabal, T.D. Harris, L.E. Brus, W.L. Brown, E.E. Chaban, P.F. Szajowski, S.B. Christman, P.H. Citrin, Phys. Rev. B 52, 4910 (1995)

    Article  ADS  Google Scholar 

  32. P.M. Fauchet, J. Lumin. 70, 294 (1996)

    Article  Google Scholar 

  33. M. Fujii, A. Mimura, S. Hayashi, K. Yamamoto, Appl. Phys. Lett. 75, 184 (1999)

    Article  ADS  Google Scholar 

  34. S. Takeoka, M. Fujii, S. Hayashi, Phys. Rev. B 62, 820 (2000)

    Article  Google Scholar 

  35. F.A. Rustamov, N.H. Darvishov, V.E. Bagiev, M.Z. Mamedov, E.Y. Bobrova, H.O. Qafarova, J. Lumin. 154, 224 (2014)

    Article  Google Scholar 

  36. Y. Hamlaoui, L. Tifouti, C. Remazeilles, F. Pedraza, Mater. Chem. Phys. 120, 172 (2010)

    Article  Google Scholar 

  37. E. Stoyanova, D. Guergova, D. Stoychev, I. Avramova, P. Stefanov, Electrochim. Acta 55, 1725 (2010)

    Article  Google Scholar 

  38. K. Kamada, K. Higashikawa, M. Inada, N. Enomoto, J. Hojo, J. Phys. Chem. C 111, 14508 (2007)

    Article  Google Scholar 

  39. A.H. Morshed, M.E. Moussa, S.M. Bedair, R. Leonard, S.X. Liu, N. El-Masry, Appl. Phys. Lett. 70, 1647 (1997)

    Article  ADS  Google Scholar 

  40. M. Santamaria, L. Asaro, P. Bocchetta, B. Megna, F.D. Quarto, J. Electrochem. Soc. 160, D212 (2013)

    Article  Google Scholar 

  41. T. Wiktorczyk, P. Biegański, E. Zielony, Opt. Mater. 34, 2101 (2012)

    Article  ADS  Google Scholar 

  42. L.F. Loguercio, C.C. Alves, A. Thesing, J. Ferreira, Phys. Chem. Chem. Phys. 17, 1234 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the research project of No. 12101607 in “Phase Interface Science for Highly Efficient Energy Utilization” of JST Core Research for Evolutional Science and Technology (CREST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Mizuhata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1677 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizuhata, M., Kubo, Y. & Maki, H. Electrodeposition of cerium oxide on porous silicon via anodization and enhancement of photoluminescence. Appl. Phys. A 122, 103 (2016). https://doi.org/10.1007/s00339-015-9562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9562-9

Keywords

Navigation