Skip to main content

Advertisement

Log in

Elastic and mechanical properties of hexagonal diamond under pressure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hexagonal diamond is the harder and stiffer alternative of traditional cubic diamond for today’s technology. Although several theoretical attempts have been performed to understand the ground-state elastic properties of hexagonal diamond, little is known about the high-pressure elastic properties of this key material. Unlike previous theoretical methods, we report the application of second-generation reactive bond order potential for the first time to elaborate the pressure-dependent properties of hexagonal diamond in conjunction with geometry optimization calculations up to 500 GPa. Pressure dependency of density, five independent elastic constants, bulk, shear and Young moduli, Poisson ratio, elastic wave velocities, anisotropy parameter, Kleinman parameter, and stability conditions of hexagonal diamond were evaluated. Overall, considered properties of hexagonal diamond display evident increments under pressure, and their ground-state values are in reasonable agreement with available theoretical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Güler, M. Güler, J. Chin. Phys. 52, 1625–1635 (2014)

    Google Scholar 

  2. E. Güler, M. Güler, Mater. Res. 17, 1268–1272 (2014)

    Article  Google Scholar 

  3. Z. Pan et al., Phys. Rev. Lett. 102, 055503 (2009)

    Article  ADS  Google Scholar 

  4. L. Kingkun et al., Scr. Mater. 65, 229–232 (2011)

    Article  Google Scholar 

  5. S.Q. Wang, H.Q. Ye, J. Phys.: Condens. Matter 15, L197–L202 (2003)

    ADS  Google Scholar 

  6. A.W. Phelps, J. Mater. Sci. Lett. 9, 1096–1098 (1990)

    Article  Google Scholar 

  7. S.Q. Wang, H.Q. Ye, J. Phys.: Condens. Matter 15, 5307–5314 (2003)

    ADS  Google Scholar 

  8. B. Wen et al., Diam. Relat. Mater. 17, 356–364 (2008)

    Article  ADS  Google Scholar 

  9. T. Shao et al., J. Appl. Phys. 111, 083525 (2012)

    Article  ADS  Google Scholar 

  10. J.D. Gale, J. Chem. Soc. Faraday 93, 629 (1997)

    Article  Google Scholar 

  11. J.D. Gale, A.L. Rohl, Mol. Simul. 29, 291 (2003)

    Article  MATH  Google Scholar 

  12. E. Güler, M. Güler, Adv. Mater. Sci. Eng. (2013) Article ID 525673 (2013)

  13. M. Güler, E. Güler, Chin. Phys. Lett. 30, 056201 (2013)

    Article  ADS  Google Scholar 

  14. D.W. Brenner et al., J. Phys.: Condens. Matter 14, 783 (2002)

    ADS  Google Scholar 

  15. J.D. Gale, in Molecular Modeling Theory: Applications, (in the Geosciences), eds. C.R. Timothy, J.D. Kubicki, 37 (Mineralogical Society of America, Washington, 2001)

  16. F. Mouhat, F.X. Coudert (2014), http://arxiv.org/abs/1410.0065

  17. G. Murtaza et al., J. Alloy. Compd. 597, 36–44 (2014)

    Article  Google Scholar 

  18. M. Güler, E. Güler, J. Optoelectron. Adv. Mater. 16, 1222–1227 (2014)

    Google Scholar 

  19. D.C. Gupta, I.H. Bhat, Mater. Chem. Phys. 146, 303–312 (2014)

    Article  Google Scholar 

  20. M. Chauhan, D.C. Gupta, Comput. Mater. Sci. 90, 182–195 (2014)

    Article  Google Scholar 

  21. A. Missoum et al., Can. J. Phys. 92, 1105–1112 (2014)

    Article  ADS  Google Scholar 

  22. M. Ameri et al., Mater. Sci. Semicond. Process. 27, 368–379 (2014)

    Article  Google Scholar 

  23. X. Zeng et al., Adv. Mater. Sci. Eng., vol. 2014 (2014), Article ID 189423, 9 pages

  24. E. Güler, M. Güler, J. Chin. Phys. (2014 in press)

  25. G.N. Graves et al., Nat. Mater. 10, 823–837 (2011)

    Article  ADS  Google Scholar 

  26. D. Varshney, S. Shriya, R. Khenata, Mater. Chem. Phys. 135, 365–384 (2012)

    Article  Google Scholar 

  27. M. Rajagopalan, Phys. B 413, 1–5 (2013)

    Article  ADS  Google Scholar 

  28. A.B. Mei et al., J. Appl. Phys. 115, 214908 (2014)

    Article  ADS  Google Scholar 

  29. M. Zhao et al., Scr. Mater. 82, 37–40 (2014)

    Article  ADS  Google Scholar 

  30. W.Y. Liang et al., Commun. Theor. Phys. (Beijing, China) 49, 489–492 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Güler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güler, E., Güler, M. Elastic and mechanical properties of hexagonal diamond under pressure. Appl. Phys. A 119, 721–726 (2015). https://doi.org/10.1007/s00339-015-9020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9020-8

Keywords

Navigation