Skip to main content
Log in

Synthesis and the enhanced visible-light-driven photocatalytic activity of BiVO4 nanocrystals coupled with Ag nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

BiVO4 nanocrystals coupled with Ag nanoparticles (Ag–BiVO4 heterogeneous nanostructures) have been prepared by a new strategy via combining a hydrothermal route with a polyol process, in which BiVO4 nanocrystals were first synthesized by a hydrothermal route, and then, Ag nanoparticles were grown on the surfaces of the presynthesized BiVO4 nanocrystals through a polyol process. The photocatalytic evaluations demonstrate that BiVO4 nanocrystals coupled with Ag nanoparticles exhibit the enhanced visible-light-driven photocatalytic activity for the degradation of methylene blue (MB) and rhodamine B (RhB). The energy alignment and diffuse reflectance property of Ag–BiVO4 heterogeneous nanostructures demonstrate that Ag nanoparticles attached on the surfaces of BiVO4 nanocrystals play double roles for the enhanced visible-light-driven photocatalytic activity. First, the Ag nanoparticles grown on the surfaces of BiVO4 nanocrystals may act as electron sinks to retard the recombination of the photogenerated electrons and holes in BiVO4 so as to improve the charge separation on its surfaces. Second, the Ag nanoparticles increase the visible light absorption of the Ag–BiVO4 photocatalyst due to surface plasmon resonance (SPR) of Ag nanoparticles. These double roles of Ag nanoparticles make Ag–BiVO4 heterogeneous nanostructures to exhibit the enhanced photocatalytic activity to decompose MB and RhB under visible light irradiation, compared to the pure BiVO4 nanocrystals. The enhanced photocatalytic activity is attributed to the charge transfer from BiVO4 to the attached Ag nanoparticles as well as SPR absorption of Ag nanoparticles. The present work not only provides an efficient route to enhance visible-light-driven photocatalytic activity of BiVO4, but also offers a new strategy for fabricating metal–semiconductor heterogeneous nanostructure photocatalysts, which are expected to show considerable potential applications in solar-driven wastewater treatment and water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  2. J.W. Tang, Z.G. Zou, J.H. Ye, Angew. Chem. Int. Ed. 43, 4463 (2004)

    Article  Google Scholar 

  3. A. Iwase, A. Kudo, J. Mater. Chem. 20, 7536 (2010)

    Article  Google Scholar 

  4. D.G. Wang, H.F. Jiang, X. Zong, Q. Xu, Y. Ma, G.L. Li, C. Li, Chem. Eur. J. 17, 1275 (2011)

    Article  Google Scholar 

  5. T. Saison, N. Chemin, C. Chanéac, O. Durupthy, V. Ruaux, L. Mariey, F. Maugé, P. Beaunier, J.-P. Jolivet, J. Phys. Chem. C 115, 5657 (2011)

    Article  Google Scholar 

  6. L.S. Zhang, W.Z. Wang, J. Yang, Z.G. Chen, W.Q. Zhang, L. Zhou, S.W. Liu, Appl. Catal. A Gen. 308, 105 (2006)

    Article  Google Scholar 

  7. D. Chen, J.H. Ye, Adv. Funct. Mater. 18, 1922 (2008)

    Article  Google Scholar 

  8. T. Arai, M. Yanagida, Y. Konishi, A. Ikura, Y. Iwasaki, H. Sugihara, K. Sayama, Appl. Catal. B Environ. 84, 42 (2008)

    Article  Google Scholar 

  9. A. Duret, M. Grätzel, J. Phys. Chem. B 109, 17184 (2005)

    Article  Google Scholar 

  10. H. Xie, Y.Z. Li, S.F. Jin, J.J. Han, X.J. Zhao, J. Phys. Chem. C 114, 9706 (2010)

    Article  Google Scholar 

  11. C.H. Kuo, C.H. Chen, M.H. Huang, Adv. Funct. Mater. 17, 3773 (2007)

    Article  Google Scholar 

  12. S. Somasundaram, C. Ramannairchenthamarakshan, N. Detacconi, K. Rajeshwar, Int. J. Hydrog. Energy 32, 4661 (2007)

    Article  Google Scholar 

  13. A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121, 11459 (1999)

    Article  Google Scholar 

  14. S. Tokunaga, H. Kato, A. Kudo, Chem. Mater. 13, 4624 (2001)

    Article  Google Scholar 

  15. S. Kohtania, M. Koshiko, A. Kudo, K. Tokumura, Y. Ishigaki, A. Toriba, K.R. Hayakawa, Appl. Catal. B Environ. 46, 573 (2003)

    Article  Google Scholar 

  16. S. Kohtani, J. Hiro, N. Yamamoto, A. Kudo, K. Tokumura, R. Nakagaki, Catal. Commun. 6, 185 (2005)

    Article  Google Scholar 

  17. J. Yu, A. Kudo, Adv. Funct. Mater. 16, 2163 (2006)

    Article  Google Scholar 

  18. X. Zhang, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Mater. Chem. Phys. 103, 162 (2007)

    Article  Google Scholar 

  19. L. Ge, Mater. Chem. Phys. 107, 465 (2008)

    Article  Google Scholar 

  20. J. Yu, Y. Zhang, A. Kudo, J. Solid State Chem. 182, 223 (2009)

    Article  ADS  Google Scholar 

  21. Y. Zhou, K. Vuille, A. Heel, B. Probst, R. Kontic, G. Patzke, Appl. Cataly. A Gen. 375, 140 (2010)

    Article  Google Scholar 

  22. G.C. Xi, J.H. Ye, Chem. Commun. 46, 1893 (2010)

    Article  Google Scholar 

  23. P. Chatchai, Y. Murakami, S.-Y. Kishioka, A.-Y. Nosaka, Y. Nosaka, Electrochi. Acta 54, 1147 (2009)

    Article  Google Scholar 

  24. H.-Q. Jiang, H. Endo, H. Natori, M. Nagai, K. Kobayashi, Mater. Res. Bull. 44, 700 (2009)

    Article  Google Scholar 

  25. P. Chatchai, S.-Y. Kishioka, Y. Murakami, A.Y. Nosaka, Y. Nosaka, Electrochi. Acta 55, 592 (2010)

    Article  Google Scholar 

  26. S. Yanagida, A. Nakajima, T. Sasaki, Y. Kameshima, K. Okada, Chem. Mater. 20, 3757 (2008)

    Article  Google Scholar 

  27. Y. Hou, X.Y. Li, Q.D. Zhao, X. Quan, G.H. Chen, Environ. Sci. Technol. 44, 5098 (2010)

    Article  ADS  Google Scholar 

  28. P.D. Tran, L.H. Wong, J. Barber, S.C.J. Loo, Energy Environ. Sci. 5, 5902 (2012)

    Article  Google Scholar 

  29. H.Y. Yang, S.F. Yu, S.P. Lau, X.W. Zhang, D.D. Sun, G. Jun, Small 5, 2260 (2009)

    Article  Google Scholar 

  30. W.J. Youngblood, S.-H.A. Lee, K. Maeda, T.E. Mallouk, Acc. Chem. Res. 42, 1966 (2009)

    Article  Google Scholar 

  31. H. Hagiwara, T. Inoue, K. Kaneko, T. Ishihara, Chem. Eur. J. 15, 12862 (2009)

    Article  Google Scholar 

  32. H.G. Kim, D.W. Hwang, J.S. Lee, J. Am. Chem. Soc. 126, 8912 (2004)

    Article  Google Scholar 

  33. M. Murdoch, G.I.N. Waterhouse, M.A. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca, H. Idriss, Nat. Chem. 3, 489 (2011)

    Google Scholar 

  34. M. Ahmad, S. Yingying, A. Nisar, H.Y. Sun, W.C. Shen, M. Wei, J. Zhu, J. Mater. Chem. 21, 7723 (2011)

    Article  Google Scholar 

  35. S. Sarkar, A. Makhal, T. Bora, S. Baruah, J. Dutta, S.K. Pal, Phys. Chem. Chem. Phys. 13, 12488 (2011)

    Article  Google Scholar 

  36. X.B. Cao, L. Gu, L.J. Zhuge, W.J. Gao, W.C. Wang, S.F. Wu, Adv. Funct. Mater. 16, 896 (2006)

    Article  Google Scholar 

  37. J. Virkutyte, R.S. Varma, New J. Chem. 34, 1094 (2010)

    Article  Google Scholar 

  38. Y.L. Pan, S.Z. Deng, L. Polavarapu, N.Y. Gao, P.Y. Yuan, C.H. Sow, Q.H. Xu, Langmuir 28, 12304 (2012)

    Article  Google Scholar 

  39. S.-W. Cao, Z. Yin, J. Barber, F.Y.C. Boey, S.C.J. Loo, C. Xue, ACS Appl. Mater. Inter. 4, 418 (2012)

    Article  Google Scholar 

  40. H.J. Zhang, X.Y. Li, G.H. Chen, J. Mate. Chem. 19, 8223 (2009)

    Article  MathSciNet  Google Scholar 

  41. J. He, I. Ichinose, T. Kunitake, A. Nakao, Langmuir 18, 10005 (2002)

    Article  Google Scholar 

  42. T. Hirakawa, P.V. Kamat, J. Am. Chem. Soc. 127, 3928 (2005)

    Article  Google Scholar 

  43. P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007)

    Article  Google Scholar 

  44. S. Kohtani, K. Yoshida, T. Maekawa, A. Iwase, A. Kudo, H. Miyabe, R. Nakagaki, Phys. Chem. Chem. Phys. 10, 2986 (2008)

    Article  Google Scholar 

  45. J.L. Wu, F.C. Chen, Y.S. Hsiao, F.C. Chien, P.L. Chen, C.H. Kuo, M.H. Huang, C.S. Hsu, ACS Nano 5, 959 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC, Grants No. 11074312, 11374377), Undergraduate Innovative Test Program of China (GCCX2013110004), “985 project” (Nos. 98507-012009) and “211 project” of Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Z. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.Z., Meng, S., Tan, M. et al. Synthesis and the enhanced visible-light-driven photocatalytic activity of BiVO4 nanocrystals coupled with Ag nanoparticles. Appl. Phys. A 118, 1347–1355 (2015). https://doi.org/10.1007/s00339-014-8887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8887-0

Keywords

Navigation