Skip to main content
Log in

Characterization of hydrophobic, oxidized porous silicon layer formed by anodic etching of n+-type silicon surface in a HF:C2H5OH:HCl:H2O2:H2O electrolyte for bio-application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Porous silicon (PS) has been prepared in the dark by anodic etching of n+-type (111) silicon substrate in a HF:HCl:C2H5OH:H2O2:H2O electrolyte. The processed PS layer is characterized by means of photoluminescence (PL) spectroscopy, scanning electron microscope (SEM), water contact angle (CA) measurements, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and micro-Raman scattering. The CA of fresh PS layer is found to be ~142°. On aging at ambient conditions, the CA decreases gently to reach ~133° after 3 month, and then it is stabilized for a prolonged time of aging. The visible PL emission from the PS layer also exhibits a good stability against aging time. The FTIR and XPS measurements and analysis show that the stable aged PS layer has rather SiO2-rich surface. The micro/nanostructure nature of the PS layer is revealed from SEM and micro-Raman results and correlated to CA results. Stable hydrophobic surface of oxidized PS layer is attractive for bio-applications. The efficiency of the produced PS layers as an entrapping template for specific immobilization of IgG2a antibody via physical absorption process is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    Article  ADS  Google Scholar 

  2. P. McCord, S.L. Yau, A.J. Bard, Science 257, 68 (1992)

    Article  ADS  Google Scholar 

  3. M. Archer, Sens. Actuators B 106, 347 (2005)

    Article  Google Scholar 

  4. V.S.-Y. Lin, K. Motesharei, K.-P.S. Dancil, M.J. Sailor, M.R. Ghadiri, Science 278, 840 (1997)

    Article  ADS  Google Scholar 

  5. L. Brus, J. Phys. Chem. 98, 3575 (1994)

    Google Scholar 

  6. K.D. Hirschman, L. Tsybeskov, S.P. Duttagupta, F.M. Fauchet, Nature 384, 338 (1996)

    Article  ADS  Google Scholar 

  7. J. Wei, J.M. Buriak, G. Siuzdak, Nature 399, 243 (1999)

    Article  ADS  Google Scholar 

  8. M.P. Stewart, J.M. Buriak, Adv. Mater. 12, 859 (2000)

    Article  Google Scholar 

  9. H. Föll, M. Christophereson, I. Carstensen, G. Hasse, Mater. Sci. Eng. R 280, 1 (2002)

    Google Scholar 

  10. E.C. Wu, J.S. Andrew, L. Cheng, W.R. Freeman, L. Pearson, M.J. Sailor, Biomaterials 32, 1957 (2011)

    Article  Google Scholar 

  11. S.P. Low, N.H. Voelcker, L.T. Canham, K.A. Williams, Biomaterials 30, 2873 (2009)

    Article  Google Scholar 

  12. A. Jane, R. Dronov, A. Hodges, N.H. Voelcker, Trends Biotechnol. 27, 230 (2009)

    Article  Google Scholar 

  13. C. Mazzoleni, L. Pavesi, Appl. Phys. Lett. 67, 2983 (1995)

    Article  ADS  Google Scholar 

  14. L. Canham, in Properties of porous silicon, in EMIS Data reviews, vol. 18, ed. by B.L. Weiss (Institution of engineering and technology, London, 1997)

  15. S. Boughaba, K. Wang, Thin Solid Films 497, 83 (2006)

    Article  ADS  Google Scholar 

  16. V. Chamard, G. Dolino, J. Appl. Phys. 89, 174 (2001)

    Article  ADS  Google Scholar 

  17. R.R. Koropecki, R.D. Arce, A.M. Gennaro, C. Spies, J.A. Schmidt, J. Non Cryst. Solids 352, 1163 (2006)

    Article  ADS  Google Scholar 

  18. M. Naddaf, H. Hamadeh, Mater. Sci. Eng. C 29, 2092 (2009)

    Article  Google Scholar 

  19. A.I. Belogorokhov, R. Enderlein, A. Tabata, V.A. Karavanskii, L.I. Belogorokhova, Phys. Rev. B 56, 10276 (1997)

    Article  ADS  Google Scholar 

  20. A.I. Belogorokhov, L.I. Belogorokhova, Semiconductors 33, 169 (1999)

    Article  ADS  Google Scholar 

  21. S.A. Gavrilov, A.I. Belogorokhov, L.I. Belogorokhova, Semiconductors 36, 98 (2002)

    Article  ADS  Google Scholar 

  22. Z. Yamani, W.H. Thompson, L. AbuHassan, M.H. Nayfen, Appl. Phys. Lett. 70, 3404 (1997)

    Article  ADS  Google Scholar 

  23. V. Lehmann, R. Stengl, A. Luigart, Mater. Sci. Eng. B 69(70), 11 (2000)

    Google Scholar 

  24. T.V. Voloshina, T.N. Zavaritskaya, I.V. Kavetskaya, V.A. Karavanskii, D.A. Romashov, J. Appl. Spectrosc. 69, 275 (2002)

    Article  Google Scholar 

  25. P. Allongue, J. Electrochem. Soc. 140, 1018 (1993)

    Article  Google Scholar 

  26. A. Janshoff, K.-P. S. Dancil, C. Steinem, D.P. Greiner, V.S.-Y. Lin, C. Gurtner, K. Motesharei, M.J. Sailor, M.R. Ghadiri, J. Am. Chem. Soc. 120, 12108 (1998)

    Google Scholar 

  27. J.M. Buriak, M.P. Stewart, T.W. Geders, M.J. Allen, H.C. Choi, J. Smith, D. Raftery, L.T. Canham, J. Am. Chem. Soc. 121, 11491 (1999)

    Article  Google Scholar 

  28. M. Naddaf, F. Awad, M. Soukeih, Mater. Sci. Eng. C 27, 832 (2007)

    Article  Google Scholar 

  29. Xiao-yuan Hou, Hong-lei Fan, Xu Lei, Fu-long Zhang, Min-qian Li, Yu. Ming-ren, Xun Wang, Appl. Phys. Lett. 68, 2323 (1996)

    Article  ADS  Google Scholar 

  30. G.G. Qin, H.Z. Song, B.R. Zhang, J. Lin, J.Q. Duan, G.Q. Yao, Phys. Rev. B 54, 2548 (1996)

    Article  ADS  Google Scholar 

  31. E.A. Petrova, K.N. Bogoslovskaya, L.A. Balagurov, G.I. Kochoradze, Mater. Sci. Eng. B 69, 152 (2000)

    Article  Google Scholar 

  32. A.H. Ellison, W.A. Ziman, J. Phys. Chem. 58, 260 (1954)

    Google Scholar 

  33. M. Ma, R.M. Hill, Curr. Opin. Colloid Interface Sci. 11, 193 (2006)

    Article  Google Scholar 

  34. S. Ossicini, L. Pavesi, F. Priolo, Light Emitting Silicon for Microphotonics, vol. 194 (Springer, Berlin, 2003)

    Google Scholar 

  35. P. Gupta, V.L. Colvin, S.M. George, Phys. Rev. B 37, 8234 (1988)

    Article  ADS  Google Scholar 

  36. A. Borghesi, A. Sassella, B. Pivac, L. Pavesi, Solid State Commun. 87, 1 (1993)

    Article  ADS  Google Scholar 

  37. F.G. Bell, L. Ley, Phys. Rev. B 37, 8383 (1988)

    Article  ADS  Google Scholar 

  38. C.D. Wagner, W.M. Riggs, W.E. Davis, J.F. Moulder, G.E. Muilenberg (eds.), Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, 1979)

    Google Scholar 

  39. S.R. Das, J.B. Webb, S.C. de Castro, V.S. Sundaram, J. Appl. Phys. 60, 2530 (1986)

    Article  ADS  Google Scholar 

  40. R. Tubino, L. Piseri, G. Zerbi, J. Chem. Phys. 56, 1022 (1972)

    ADS  Google Scholar 

  41. Md.N. Islam, S. Kumar, Appl. Phys. Lett. 78, 715 (2001)

  42. D.E. Milovzorov, Nonlinear optoelectronic devices based on nanocrystalline silicon films: acoustoelectrical switches for optical modes, nonlinear optical switches and lasers, in Nanocrystal, ed. by Y. Masuda, InTech, (2011) available from; http://www.intechopen.com/books/nanocrystal/nonlinear-optoelectronic-devices-based-onnanocrystallinesilicon-films-acoustoelectrical-switches-f

  43. H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 62 (1981)

    Google Scholar 

  44. P.A. Temple, C.E. Hathaway, Phys. Rev. B 7, 3685 (1973)

    Article  ADS  Google Scholar 

  45. H.D. Fuchs, M. Stutzmann, M.S. Brandt, M. Rosenbauer, J. Weber, A. Breitschwerdt, P. Deak, M. Cardona, Phys. Rev. B 48, 8172 (1993)

    Article  ADS  Google Scholar 

  46. J.Y. Yoon, R.L. Garrell, Anal. Chem. 75, 5097 (2003)

    Article  Google Scholar 

  47. F.A. Denis, P. Hanarp, D.S. Sutherland, J. Gold, C. Mustin, P.G. Rouxhet, Y.P. Dufrêne, Langmuir 18, 819 (2002)

    Article  Google Scholar 

  48. K. Nakanishi, T. Sakiyama, Y. Kumada, K. Imamura, H. Imanaka, Curr. Proteomics 5, 161 (2008)

    Article  Google Scholar 

  49. S. Libertino, V. Aiello, A. Scandurra, M. Renis, F. Sinatra, Sensors 8, 5637 (2008)

    Article  Google Scholar 

  50. M. Naddaf, A. Al-Mariri, Sens. Actuators B 160, 835 (2011)

    Article  Google Scholar 

  51. M. Yoshinari, T. Huyakawa, K. Matsuzaka, T. Inoue, Y. Oda, M. Shimono, T. Ide, T. Tanaka, Biomed. Res. 27, 29 (2006)

    Article  Google Scholar 

  52. I. Notingher, L.L. Hench, Expert Rev. Med. Devices 3, 215 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director General of AECS, Professor I Othman for encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naddaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naddaf, M., Almariri, A. Characterization of hydrophobic, oxidized porous silicon layer formed by anodic etching of n+-type silicon surface in a HF:C2H5OH:HCl:H2O2:H2O electrolyte for bio-application. Appl. Phys. A 116, 1337–1345 (2014). https://doi.org/10.1007/s00339-014-8230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8230-9

Keywords

Navigation