Skip to main content
Log in

Controlling magnetic properties of iron oxide nanoparticles using post-synthesis thermal treatment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Changes in morphological and magnetic properties of Fe3O4 nanoparticles before and after annealing are investigated in the present work. The nanoparticles are synthesized in a standard capacitively coupled plasma enhanced chemical vapour deposition system with two electrodes using ferrocene as the source compound. Post annealing, due to the sintering process, the particles fuse along with recrystallization. This results in increased size of the nanoparticles and the interparticle interaction, which play a major role in deciding the magnetic properties. X-ray diffraction patterns of the samples before and after annealing indicate a phase change from Fe3O4 to Fe2O3. Annealing at 200 C causes the apparent saturation magnetization to increase from 6 emu g−1 to 15 emu g−1. When annealed at 500 C, the magnetic properties of the nanoparticles resemble those of the bulk material. The evidence for the transition from a superparamagnetic state to a collective state is also observed when annealed at 500 C. Variation of the magnetic relaxation data with annealing also reflects the change in the magnetic state brought about by the annealing. The correlation between annealing temperature and the magnetic properties can be used to obtain nanocrystallites of iron oxide with different sizes and magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.L. Huber, Small 5, 482 (2005)

    Article  Google Scholar 

  2. A. Teja, P. Koh, Prog. Cryst. Growth Charact. Mater. 55, 22 (2009)

    Article  Google Scholar 

  3. A. Lu, E. Salabas, F. Schüth, Angew. Chem., Int. Ed. Engl. 46, 1222 (2007)

    Article  Google Scholar 

  4. M. Tadic, V. Kusigerski, D. Markovic, M. Panajan, I. Milosevic, V. Spasojevic, J. Alloys Compd. 525, 28 (2012)

    Article  Google Scholar 

  5. V. Panchal, M. Neergat, U. Bhandarkar, J. Nanopart. Res. 13, 3825 (2011)

    Article  Google Scholar 

  6. D. Mcllroy, J. Huso, Y. Kranov, J. Marchinek, C. Ebert, S. Moore, E. Marji, R. Gandy, Y. Hong, M.G. Nortan, E. Cavalieri, R. Benz, B. Justus, A. Rosenberg, J. Appl. Phys. 93, 5643 (2003)

    Article  ADS  Google Scholar 

  7. P. Lei, A. Boies, S. Calder, S. Girshick, Plasma Chem. Plasma Process. 32, 519 (2012)

    Article  Google Scholar 

  8. S. Martelli, A. Mancini, R. Giorgi, R. Alexandrescu, S. Cojocaru, A. Crunteanu, I. Voicu, M. Balu, I. Morjan, Appl. Surf. Sci. 154–155, 353 (2000)

    Article  Google Scholar 

  9. K. Woo, J. Hong, S. Choi, H. Lee, J. Ahn, C. Kim, S. Lee, Chem. Mater. 16, 2814 (2004)

    Article  Google Scholar 

  10. W. Luo, S. Nagel, T. Rosenbaum, R.E. Rosensweig, Phys. Rev. Lett. 67, 2721 (1991)

    Article  ADS  Google Scholar 

  11. J. Lee, R. Tan, J. Wu, Y. Kim, Appl. Phys. Lett. 99, 062506 (2011)

    Article  Google Scholar 

  12. P. Haddad, T. Rocha, E. Souza, T. Martins, M. Knobel, D. Zanchet, J. Colloid Interface Sci. 339, 344 (2009)

    Article  Google Scholar 

  13. V. Panchal, G. Lahoti, U. Bhandarkar, M. Neergat, J. Phys. D, Appl. Phys. 44, 345205 (2011)

    Article  Google Scholar 

  14. K. Kuwana, K. Saito, Proc. Combust. Inst. 31, 1857 (2007)

    Article  Google Scholar 

  15. T. Scott, M. Dickinson, R. Crane, O. Riba, G. Hughes, G. Allen, J. Nanopart. Res. 12, 1765 (2010)

    Article  Google Scholar 

  16. M. Dickinson, T. Scott, R. Crane, O. Riba, R. Barnes, G. Hughes, J. Nanopart. Res. 12, 2081 (2010)

    Article  Google Scholar 

  17. P. Letellier, A. Mayaffre, M. Turmine, Phys. Rev. B 76, 045428 (2007)

    Article  ADS  Google Scholar 

  18. D. Radziuk, D. Grigoriev, W. Zhang, D. Su, H. Mohwald, D. Shchukin, J. Phys. Chem. C 114, 1835 (2010)

    Article  Google Scholar 

  19. X. Xu, Y. Wolfus, A. Shaulov, Y. Yeshurun, I. Felner, I. Nowik, Y. Koltypin, A. Gedanken, J. Appl. Phys. 91, 4611 (2002)

    Article  ADS  Google Scholar 

  20. R. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd edn. (Wiley-VCH, Weinheim, 2003), p. 366

    Book  Google Scholar 

  21. J. Tang, M. Myers, K. Bosnick, L. Brus, J. Phys. Chem. B 107, 7501 (2003)

    Article  Google Scholar 

  22. J. Sanders, P. Gallagher, Thermochim. Acta 406, 241 (2003)

    Article  Google Scholar 

  23. G. Gnanaprakash, S. Ayyappan, T. Jayakumar, J. Philip, B. Raj, Nanotechnology 17, 5851 (2006)

    Article  ADS  Google Scholar 

  24. G. Ennas, G. Marongiu, A. Musinu, A. Falqui, J. Mater. Res. 14, 1570 (1999)

    Article  ADS  Google Scholar 

  25. S. Morup, E. Tronc, Phys. Rev. Lett. 72, 3278 (1994)

    Article  ADS  Google Scholar 

  26. J. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98, 283 (1997)

    Google Scholar 

  27. Y. Liu, D. Sellmyer, D. Shindo (eds.), Advanced Magnetic Materials: Nanostructural Effects. Handbook of Advanced Magnetic Materials, vol. I (Springer, New York, 2009), p. 158

    Google Scholar 

  28. L. Suber, P. Imperatori, A. Mari, G. Marchegiani, M. Vasquez Mansilla, D. Fiorani, W. Plunkett, D. Rinaldi, C. Cannas, G. Ennas, D. Peddis, Phys. Chem. Chem. Phys. 12, 6984 (2010)

    Article  Google Scholar 

  29. D. De, A. Karmakar, M. Bhunia, A. Bhaumik, S. Majumdar, S. Giri, J. Appl. Phys. 111, 033919 (2012)

    Article  ADS  Google Scholar 

  30. B. Maji, K. Suresh, A. Nigam, J. Phys. Condens. Matter 23, 506002 (2011)

    Article  ADS  Google Scholar 

  31. M. Thakur, M. Chowdhury, S. Majumdar, S. Giri, Nanotechnology 19, 045706 (2008)

    Article  ADS  Google Scholar 

  32. T. Taniyama, I. Nakatani, J. Appl. Phys. 83, 6323 (1998)

    Article  ADS  Google Scholar 

  33. J. García-Otero, M. Porto, J. Rivas, A. Bunde, Phys. Rev. Lett. 84, 167 (2000)

    Article  ADS  Google Scholar 

  34. S. Gubin (ed.), Magnetic Nanoparticles (Wiley-VCH, Weinheim, 2009), p. 224

    Google Scholar 

  35. D.X. Li, Y. Shiokawa, Y. Homma, A. Uesawa, A. Donni, T. Suzuki, Y. Haga, E. Yamamoto, T. Honma, Y. Onuki, Phys. Rev. B 57, 7434 (1998)

    Article  ADS  Google Scholar 

  36. T. Tolinski, K. Synoradzki, Intermetallics 19, 62 (2011)

    Article  Google Scholar 

  37. V. Bisht, K. Rajeev, J. Phys. Condens. Matter 22, 016003 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work has been supported by the Department of Science and Technology (DST), Government of India (project Nos. SR/S3/CE/37/2005 and SR/S1/PC-27/2008). The authors would like to thank the PPMS Laboratory (Department of Physics), the Sophisticated Analytical Instrument Facility and the XRD Laboratory (Department of Metallurgical Engineering and Material Science) all at Indian Institute of Technology Bombay for the characterization of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra Bhandarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panchal, V., Bhandarkar, U., Neergat, M. et al. Controlling magnetic properties of iron oxide nanoparticles using post-synthesis thermal treatment. Appl. Phys. A 114, 537–544 (2014). https://doi.org/10.1007/s00339-013-7610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7610-x

Keywords

Navigation