Skip to main content
Log in

Accelerated in vitro durability testing of nonvascular Nitinol stents based on the electrical potential sensing method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we report an evaluation of the performance of a new stent durability tester based on the electrical potential sensing method through accelerated in vitro testing of six different nonvascular Nitinol stents simulating physiological conditions. The stents were subjected to a pulsatile loading of 33 Hz for a total of 62,726,400 cycles, at constant temperature and pressure of 35±0.5 °C and 120±4 mmHg, respectively. The electrical potential of each stent was measured in real-time and monitored for any changes in readings. After conducting test-to-fracture tests, the stents were visually checked, and by scanning electron microscopy. A sudden electrical potential drop in the readings suggests a fracture has occurred, and the only two instances of fracture in our present results were correctly determined by our present device, with the fractures confirmed visually after the test. The excellent performance of our new method shows good potential for a highly reliable and applicable in vitro durability testing for different kinds and sizes of metallic stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.A. James, R.A. Sire, Fatigue-life assessment and validation techniques for metallic vascular implants. Biomaterials 31(2), 181–186 (2010)

    Article  ADS  Google Scholar 

  2. X. Zhou, Z. You, J. Byrne, Bio-inspired leaf stent for direct treatment of cerebral aneurysms: design and finite element analysis. Smart Struct. Syst. 8(1), 1–15 (2011)

    Article  MATH  Google Scholar 

  3. D.K. Lee, Drug-eluting stent in malignant biliary obstruction. J. Hepatobiliary Pancreat. Surg. 16(5), 628–632 (2009)

    Article  Google Scholar 

  4. C. Dumoulin, B. Cochelin, Mechanical behaviour modelling of balloon-expandable stents. J. Biomech. 33(11), 1461–1470 (2000)

    Article  Google Scholar 

  5. J.J. Li, Q.Y. Luo, Z.Y. Xie, Y. Li, Y.J. Zeng, Fatigue life analysis and experimental verification of coronary stent. Heart Vessels 25(4), 333–337 (2010)

    Article  Google Scholar 

  6. C. Capelli, F. Gervaso, L. Petrini, G. Dubini, F. Migliavacca, Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Med. Eng. Phys. 31(4), 441–447 (2009)

    Article  Google Scholar 

  7. N. Muhammad, L. Li, Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture. Appl. Phys. A, Mater. Sci. Process. 107(4), 849–861 (2012)

    Article  ADS  Google Scholar 

  8. S.W. Robertson, R.O. Ritchie, A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic nitinol tube. J. Biomed. Mater. Res., Part B, Appl. Biomater. 84B(1), 26–33 (2008)

    Article  Google Scholar 

  9. S.W. Robertson, R.O. Ritchie, In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials 28(4), 700–709 (2007)

    Article  Google Scholar 

  10. US Food and Drug Administration, Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. US Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health January 13, 2005

  11. G. Riepe, C. Heintz, E. Kaiser, N. Chakfe, M. Morlock, M. Delling, H. Imig, What can we learn from explanted endovascular devices? Eur. J. Vasc. Endovasc. Surg. 24(2), 117–122 (2002)

    Article  Google Scholar 

  12. T.S. Jacobs, J. Won, E.C. Gravereaux, P.L. Faries, N. Morrissey, V.J. Teodorescu, L.H. Hollier, M.L. Marin, Mechanical failure of prosthetic human implants: a 10-year experience with aortic stent graft devices. J. Vasc. Surg. 37(1), 16–26 (2003)

    Article  Google Scholar 

  13. S.N.D. Chua, B.J. Mac Donald, M.S.J. Hashmi, Finite element simulation of stent and balloon interaction. J. Mater. Process. Technol. 143, 591–597 (2003)

    Article  Google Scholar 

  14. C.H. Park, L.D. Tijing, Y. Yun, C.S. Kim, A novel electrical potential sensing method for in vitro stent fracture monitoring and detection. Bio-Med. Mater. Eng. 21(4), 213–222 (2011)

    Google Scholar 

  15. F.G. Kline, F.A. McClintock, Describing uncertainties in single sample experiments. Mech. Eng. 75, 3–8 (1953)

    Google Scholar 

  16. A.R. Pelton, V. Schroeder, M.R. Mitchell, X.Y. Gong, M. Barney, S.W. Robertson, Fatigue and durability of nitinol stents. J. Mech. Behav. Biomed. Mater. 1(2), 153–164 (2008)

    Article  Google Scholar 

  17. M. Gottsauner-Wolf, D.J. Moliterno, A.M. Lincoff, E.J. Topol, Restenosis—an open file. Cardiol. Clin. 19, 347–356 (1997)

    Google Scholar 

  18. M.C. Morice, P.W. Serruys, J.E. Sousa, J. Fajadet, E.B. Hayashi, M. Perin, A. Colombo, G. Schuler, P. Barragan, G. Guagliumi, F. Molnar, R. Falotico, A ramdomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 346, 1773–1780 (2000)

    Article  Google Scholar 

  19. R. Guidoin, Y. Marois, Y. Douville, M.W. King, M. Castonguay, A. Traore, M. Formichi, L.E. Staxrud, L. Norgren, P. Bergeron, J.P. Becquemin, J.M. Egana, P.L. Harris, First-generation aortic endografts: analysis of explanted stenter devices from the EUROSTAR registry. J. Endovasc. Ther. 7(2), 105–122 (2000)

    Article  Google Scholar 

  20. H.J. Salacinski, S. Goldner, A. Giudiceandrea, G. Hamilton, A.M. Seifalian, A. Edwards, R.J. Carson, The mechanical behavior of vascular grafts: a review. J. Biomater. Appl. 15(3), 241–278 (2001)

    Article  Google Scholar 

  21. R. Uflacker, J. Robison, Endovascular treatment of abdominal aortic aneurysms: a review. Eur. Radiol. 11(5), 739–753 (2001)

    Article  Google Scholar 

  22. X.Y. Gong, D.J. Chwirut, M.R. Mitchell, B.D. Choules, Fatigue to fracture: an informative, fast, and reliable approach for assessing medical implant durability. J. ASTM Int. 6(7), 1–10 (2009)

    Article  Google Scholar 

  23. R. Guidoin, Y. Douville, M.W. King, M. Castonguay, A. Traore, M. Formichi, L.E. Staxrud, L. Norgren, P. Bergeron, J.P. Becquemin, J.M. Egana, P.L. Harris, First-generation aortic endografts: analysis of explanted stentor devices from the EUROSTAR registry. J. Endovasc. Ther. 7(2), 105–122 (2000)

    Article  Google Scholar 

  24. S. Schievano, A.M. Taylor, C. Capelli, P. Lurz, J. Nordmeyer, F. Migliavacca, P. Bonhoeffer, Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. J. Biomech. 43(4), 687–693 (2010)

    Article  Google Scholar 

  25. R.V. Marrey, R. Burgermeister, R.B. Grishaber, R.O. Ritchie, Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27(9), 1988–2000 (2006)

    Article  Google Scholar 

  26. E. Black, R. Burgermeister, R.D.B. Grishaber, D.W. Overaker, Systems and methods for fatigue testing systems. U.S. Patent 7,363,821 B2, 2008

  27. H. Zhao, L. Wang, Y. Li, X. Liu, A new device to study fatigue performance and mathematical model to analyze relationship between textile parameters and fatigue of textile scaffold for stent-graft, in Proc. of the 3rd International Conference on Bioinformatics and Biomedical Engineering: ICBBE, Beijing, China (2009), pp. 1–6

    Google Scholar 

  28. A. Nikanorov, H.B. Smouse, K. Osman, M. Bialas, S. Shrivastava, L.B. Schwartz, Fracture of self-expanding nitinol stents stressed in vitro under simulated intravascular conditions. J. Vasc. Surg. 48(2), 435–440 (2008)

    Article  Google Scholar 

  29. K.S. Vilendrer, Direct strain measurement method using an endoscope, EnduraTECH Systems Corporation. Retrieved October 25, 2010 from http://www.bose-electroforce.com/papers/ID-OD.pdf

  30. S. Muller-Hulsbeck, P.J. Schafer, N. Charalambous, H. Yagi, M. Heller, T. Jahnke, Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design. J. Endovasc. Ther. 17(6), 767–776 (2010)

    Article  Google Scholar 

  31. R.S. Perret, G.D. Sloop, J.A. Borne, Common bile duct measurements in an elderly population. J. Ultrasound Med. 19(11), 727–730 (2000)

    Google Scholar 

  32. European Standard EN12006-3: 1998, Non active surgical implants—particular requirements for cardiac and vascular implants—part 3: endovascular devices

Download references

Acknowledgements

This research was supported by a grant from the Ministry of Education, Science, and Technology through the Leaders in Industry-University Cooperation (LinC) Project (Project no. 2012-C-0043-010111) and also by a grant from the Business for Greening the Manufacturing Environment Technology Development Project funded by the Korean Small and Medium Business Administration (Project no. S2025435).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonard D. Tijing or Cheol Sang Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, CH., Tijing, L.D., Pant, H.R. et al. Accelerated in vitro durability testing of nonvascular Nitinol stents based on the electrical potential sensing method. Appl. Phys. A 112, 919–926 (2013). https://doi.org/10.1007/s00339-012-7447-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7447-8

Keywords

Navigation