Skip to main content
Log in

Comparison of femtosecond laser-induced damage on unstructured vs. nano-structured Au-targets

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The combination of high-field physics with nano-plasmonics has proven to be feasible in producing high harmonics of intense laser radiation from noble gases, assisted by the field-enhancement effect in the proximity of metallic nano-antennas. However, the intensity region where harmonics can be generated without irreversible damage to these delicate structures is rather narrow. We explore the damage threshold of gold targets that exhibit regular structures on a nanoscopic scale, either explicitly resonant to the used laser frequency, or off-resonance. These are compared to values for bulk material in order to gain insight into the role of plasmonic resonances in the response of solid targets on intense laser radiation. We find that the presence of such a resonance lowers the threshold fluence (J/cm2) where global structural damage sets in by about an order of magnitude. Statistical deviations either in local pulse energy of the damage inducing laser radiation or in the exact resonance behaviour of singular structures prove to be limited. These results should serve as a guideline for future experiments working near the damage threshold of more sophisticated antenna designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Brabec, F. Krausz, Rev. Mod. Phys. 72(2), 545 (2000)

    Article  ADS  Google Scholar 

  2. T. Pfeifer, C. Spielmann, G. Gerber, Rep. Prog. Phys. 69(2), 443–505 (2006)

    Article  ADS  Google Scholar 

  3. G. Mourou, Appl. Phys. B 65(2), 205–211 (1997)

    Article  ADS  Google Scholar 

  4. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424(6950), 824–830 (2003)

    Article  ADS  Google Scholar 

  5. A. Polman, Science 322(5903), 868–869 (2008)

    Article  Google Scholar 

  6. R. Petry, M. Schmitt, J. Popp, Chem. Phys. Chem. 4(1), 14–30 (2003)

    Article  Google Scholar 

  7. J. Homola, S.S. Yee, G. Gauglitz, Sens. Actuators B, Chem. 54(1–2), 3–15 (1999)

    Article  Google Scholar 

  8. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, Nature 453(7196), 757–760 (2008)

    Article  ADS  Google Scholar 

  9. R.D. Grober, R.J. Schoelkopf, D.E. Prober, Appl. Phys. Lett. 70(11), 1354–1356 (1997)

    Article  ADS  Google Scholar 

  10. D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, W.E. Moerner, Nano Lett. 4(5), 957–961 (2004)

    Article  ADS  Google Scholar 

  11. A. Sundaramurthy, K.B. Crozier, G.S. Kino, D.P. Fromm, P.J. Schuck, W.E. Moerner, Phys. Rev. B 72(16), 165409 (2005)

    Article  ADS  Google Scholar 

  12. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, R. Bratschitsch, Nat. Photonics 2(4), 230–233 (2008)

    Article  Google Scholar 

  13. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94(1) (2005)

  14. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49(3), 2117 (1994)

    Article  ADS  Google Scholar 

  15. P.B. Corkum, Phys. Rev. Lett. 71(13), 1994 (1993)

    Article  ADS  Google Scholar 

  16. J. Kaspar, A. Luft, S. Nolte, M. Will, E. Beyer, J. Laser Appl. 18(2), 85–92 (2006)

    Article  Google Scholar 

  17. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, Phys. Rev. Lett. 80(18), 4076–4079 (1998)

    Article  ADS  Google Scholar 

  18. P.B. Corkum, F. Brunel, N.K. Sherman, T. Srinivasan-Rao, Phys. Rev. Lett. 61(25), 2886 (1988)

    Article  ADS  Google Scholar 

  19. B.N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, Appl. Phys. A, Mater. Sci. Process. 63(2), 109–115 (1996)

    Article  ADS  Google Scholar 

  20. J. Krüger, D. Dufft, R. Koter, A. Hertwig, Appl. Surf. Sci. 253(19), 7815–7819 (2007)

    Article  ADS  Google Scholar 

  21. Y. Jee, M.F. Becker, R.M. Walser, J. Opt. Soc. Am. B 5(3), 648–659 (1988)

    Article  ADS  Google Scholar 

  22. X. Ni, C.-Y. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, Z. Zhang, Appl. Surf. Sci. 253(3), 1616–1619 (2006)

    Article  ADS  Google Scholar 

  23. D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, Appl. Surf. Sci. 150(1–4), 101–106 (1999)

    Article  ADS  Google Scholar 

  24. J. Petschulat, D. Cialla, N. Janunts, C. Rockstuhl, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Popp, A. Tünnermann, F. Lederer, T. Pertsch, Opt. Express 18(5), 4184–4197 (2010)

    Article  ADS  Google Scholar 

  25. D. Cialla, R. Siebert, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tünnermann, T. Pertsch, B. Dietzek, J. Popp, Anal. Bioanal. Chem. 394(7), 1811–1818 (2009)

    Article  Google Scholar 

  26. A. Plech, V. Kotaidis, M. Lorenc, J. Boneberg, Nat. Phys. 2(1), 44–47 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Spielmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, C., Zürch, M., Petschulat, J. et al. Comparison of femtosecond laser-induced damage on unstructured vs. nano-structured Au-targets. Appl. Phys. A 104, 15–21 (2011). https://doi.org/10.1007/s00339-011-6449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6449-2

Keywords

Navigation