Skip to main content
Log in

Effect of trivalent iron substitution on structure and properties of PLZT ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polycrystalline samples of Fe-modified PLZT (lead lanthanum zirconate titanate) are prepared by a mixed-oxide reaction technique. The formation of the compound has been confirmed by X-ray powder diffraction studies. The unit cell structure of the material has been found to be rhombohedral. Fourier-transform infrared reflection (FTIR) spectra have been recorded to correspond the structural changes associated with the phase formation. The effects of Fe concentration on the microstructure and dielectric constant of PLZT materials have been investigated. The ferroelectric phase transition of PLFZT materials is studied using dielectric measurements, which shows a shift in the transition temperature towards the higher-temperature side with increased Fe ion concentration. The piezoelectric constants of this system are investigated by the same way of changed contents of Fe ion in the main PLZT compound. The optimum values of Qm, kp, and d33 are 73, 0.32 and 406. The electrical conductivity increases with the increase in Fe ion concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xu, Ferroelectric Materials and Their Applications (Elsevier Science, New York, 1991)

    Google Scholar 

  2. B. Jaffe, W. Cook, H. Jafee, Piezoelectric Ceramics (Academic Press, London, New York, 1971)

    Google Scholar 

  3. J.F. Tressler, S. Alkoy, R.E. Newnham, J. Electroceram. 2, 257 (1998)

    Article  Google Scholar 

  4. L. Lebrun, B. Guiffard, D. Audigier, E. Boucher, D. Guyomar, L. Eyraud, E. Pleska, J. Eur. Ceram. Soc. 21, 1357 (2001)

    Article  Google Scholar 

  5. S.R. Shannigrahi, R.N.P. Choudhary, J. Electroceram. 5, 201 (2000)

    Article  Google Scholar 

  6. S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, J. Appl. Phys. 98, 104305/1-10 (2005)

    Google Scholar 

  7. S.R. Shannigrahia, F.E.H. Taya, K. Yaoa, R.N.P. Choudhary, J. Eur. Ceram. Soc. 24, 163 (2004)

    Article  Google Scholar 

  8. R.N.P. Choudhary, J. Mal, Mater. Sci. Eng. B 90, 1 (2002)

    Article  Google Scholar 

  9. C. Miclea, C. Tanasoiu, C.F. Miclea, L. Amarandea, A. Gheorghiu, F.N. Simaa, J. Eur. Ceram. Soc. 25, 2397 (2005)

    Article  Google Scholar 

  10. B.W. Lee, E.J. Lee, J. Electroceram. 17, 597 (2006)

    Article  Google Scholar 

  11. R.N.P. Choudhary, S. Dutta, A.K. Thakur, P.K. Sinha, Ferroelectrics 306, 55 (2004)

    Article  Google Scholar 

  12. S. Dutta, R.N.P. Choudhary, P.K. Sinha, Phys. Stat. Solidi A 202, 1172 (2005)

    Article  ADS  Google Scholar 

  13. S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, Ferroelectrics 325, 65 (2005)

    Article  Google Scholar 

  14. S. Dutta, R.N.P. Choudhary, P.K. Sinha, J. Alloys Compd. 430, 344 (2007)

    Article  Google Scholar 

  15. S.R. Shannigrahi, R.N.P. Choudhary, H.N. Acharya, Mater. Res. Bull. 34, 1875 (1999)

    Article  Google Scholar 

  16. IRE standard on piezoelectric crystals-measurements of piezoelectric ceramics, Proc. IRE. 49, 1161 (1961)

    Google Scholar 

  17. Piezoelectric Ceramics Characterization, NASA Langley Research Center, Hampton, Virginia ICASE Report No. 2001-28 NASA/CR-2001-211225 September (2001)

  18. “POWD”, An interactive powder diffraction data interpretation and indexing Programme, ver. 2.5, E. Wul, School of Physical Science, Flinders University of South Australia, Bedford Park, S. A., 5042, Australia

  19. H.R. Rukmini, R.N.P. Choudhary, D.L. Prabhakara, Mater. Chem. Phys. 64, 171 (2000)

    Article  Google Scholar 

  20. R.N.P. Choudhary, J. Mal, Mater. Lett. 54, 175 (2002)

    Article  Google Scholar 

  21. J. Chen, H.M. Chan, M.P. Harmer, J. Am. Ceram. Soc. 72, 593 (1989)

    Article  Google Scholar 

  22. C.A. Randall, N. Kim, J.-P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Article  Google Scholar 

  23. J. Płcharski, W. Weiczorek, Solid State Ionics 2830, 979 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dutta.

Additional information

PACS

77.80.Bh; 77.84.Dy; 77.22.Ch; 72.15.Eb; 06.60.Ei; 39.30.+w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, S., Choudhary, R. Effect of trivalent iron substitution on structure and properties of PLZT ceramics. Appl. Phys. A 90, 323–328 (2008). https://doi.org/10.1007/s00339-007-4276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4276-2

Keywords

Navigation