Skip to main content
Log in

Fabrication of high-aspect-ratio silicon nanostructures using near-field scanning optical lithography and silicon anisotropic wet-etching process

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new process in which near-field scanning optical lithography (NSOL) is combined with anisotropic wet-etching of (110) silicon is developed for the fabrication of high-aspect-ratio (HAR) nanochannels. In the proposed process, NSOL is applied to produce nanopatterns on a commercial positive photoresist as in an optical lithography. The use of a commercial photoresist is an advantage of this process because it allows the direct application of many photoresists currently available without pretreatment, saving cost and time. A bare (110) silicon wafer coated with a thin Si3N4 layer, of approximately 10 nm thickness, is used as the sample and the photoresist is spincoated on the Si3N4 layer to a thickness of about 50–80 nm. Nanopatterning of the photoresist using a contact mode NSOL, transfer of the photoresist pattern onto the Si3N4 layer by reactive ion etching, and anisotropic wet etching of the silicon wafer using the patterned Si3N4 layer as an etch mask, lead to the intended HAR nanostructures. Fabrication of silicon nanochannels with a channel width below 150 nm and an aspect ratio greater than 3 is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.S.S. Chien, W.F. Hsieh, S. Gwo, A.E. Vladar, J.A. Dagata, J. Appl. Phys. 91, 10044 (2002)

    Article  ADS  Google Scholar 

  2. F.S.S. Chien, C.L. Wu, Y.C. Chou, T.T. Chen, S. Gwo, Appl. Phys. Lett. 75, 2429 (1999)

    Article  ADS  Google Scholar 

  3. I. Fernandez-Cuesta, X. Borrise, F. Perez-Murano, Nanotechnology 16, 2731 (2005)

    Article  ADS  Google Scholar 

  4. S.A. Harfenist, M.M. Yazdanpanah, R.W. Cohn, J. Vac. Sci. Technol. B 21, 1176 (2003)

    Article  Google Scholar 

  5. B. Klehn, U. Kunze, J. Appl. Phys. 85, 3897 (1999)

    Article  ADS  Google Scholar 

  6. K.M. Chang, K.S. You, J.H. Lin, J.T. Sheu, J. Electrochem. Soc. 151, 679 (2004)

    Article  Google Scholar 

  7. K. Wiesauer, G. Springholz, J. Appl. Phys. 88, 7289 (2000)

    Article  ADS  Google Scholar 

  8. L. Santinacci, T. Djenizian, P. Schmuki, Appl. Phys. Lett. 79, 1882 (2001)

    Article  ADS  Google Scholar 

  9. J. Haaheim, R. Eby, M. Nelson, J. Fragala, B. Rosner, H. Zhang, G. Athas, Ultramicroscopy 103, 117 (2005)

    Article  Google Scholar 

  10. Y. Zhang, K. Salaita, J.H. Lim, C.A. Mirkin, Nano Lett. 2, 1389 (2002)

    Article  Google Scholar 

  11. H. Zhang, S.W. Chung, C.A. Mirkin, Nano Lett. 3, 43 (2003)

    Article  MATH  Google Scholar 

  12. S. Sun, G.J. Leggett, Nano Lett. 4, 1381 (2004)

    Article  Google Scholar 

  13. S. Sun, G.J. Leggett, Nano Lett. 2, 1223 (2002)

    Article  Google Scholar 

  14. S. Sun, M. Montague, K. Critchley, M.S. Chen, W.J. Dressick, S.D. Evans, G.J. Leggett, Nano Lett. 6, 29 (2006)

    Article  Google Scholar 

  15. M.K. Herndon, R.T. Collins, R.E. Hollingsworth, P.R. Larson, M.B. Johnson, Appl. Phys. Lett. 74, 141 (1999)

    Article  ADS  Google Scholar 

  16. R. Riehn, A. Charas, J. Morgado, F. Cacialli, Appl. Phys. Lett. 82, 526 (2003)

    Article  ADS  Google Scholar 

  17. N. Landraud, J. Peretti, F. Chaput, G. Lampel, J.P. Boilot, K. Lahlil, V.I. Safarov, Appl. Phys. Lett. 79, 4562 (2001)

    Article  ADS  Google Scholar 

  18. S. Kwon, W. Chang, S. Jeong, Ultramicroscopy 105, 316 (2005)

    Article  Google Scholar 

  19. P. Royer, D. Barchiesi, G. Lerondel, R. Bachelot, Phil. Trans. R. Soc. London A 362, 821 (2004)

    Article  ADS  Google Scholar 

  20. H. Aoki, S. Ito, Thin Solid Films 449, 226 (2004)

    Article  Google Scholar 

  21. S. Wegscheider, A. Kirsch, J. Mlynek, G. Krausch, Thin Solid Films 264, 264 (1995)

    Article  Google Scholar 

  22. M.J. Madou, In: Fundamentals of Microfabrication (CRC Press LLC, 2002), pp. 215–217

  23. K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Iriye, M. Yamamoto, Sens. Actuators A 64, 87 (1998)

    Article  Google Scholar 

  24. Y.Y. Zhang, J. Zhang, G. Luo, X. Zhou, G.Y. Xie, T. Zhu, Z.F. Liu, Nanotechnology 16, 422 (2005)

    Article  ADS  Google Scholar 

  25. I. Zubel, I. Barycka, K. Kotowska, M. Kramkowska, Sens. Actuators A 87, 163 (2001)

    Article  Google Scholar 

  26. V. Grasso, V. Lambertini, P. Ghisellini, F. Valerio, E. Stura, P. Perlo, C. Nicolini, Nanotechnology 17, 795 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.H. Jeong.

Additional information

PACS

81.16.Nd; 81.16.Rf; 85.40.Hp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, S., Jeong, Y. & Jeong, S. Fabrication of high-aspect-ratio silicon nanostructures using near-field scanning optical lithography and silicon anisotropic wet-etching process. Appl. Phys. A 86, 11–18 (2007). https://doi.org/10.1007/s00339-006-3744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3744-4

Keywords

Navigation