Skip to main content
Log in

Electrical characterization of Al/AlOx/molecule/Ti/Al devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report experimental electrical characterization of Al/AlOx/molecule/Ti/Al planar crossbar devices incorporating Langmuir–Blodgett organic monolayers of eicosanoic acid, ‘fast blue’, or chlorophyll-B. Current–voltage and capacitance–voltage measurements on all three molecular device structures exhibited controllable switching hysteresis. Control devices containing no molecules showed no evidence of switching. A model of interface trapped charge mediating electronic transport appears consistent with all of the data. This data illustrates the importance of considering the complete device system (consisting of the molecules, the electrodes, and the interfaces) when analyzing its electrical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. McCreery: Electrochem. Soc. Interface 13, 25, 30, 46 (2004); S.M. Lindsay: Electrochem. Soc. Interface 13, 22 (2004); W.G. Kuhr: Electrochem. Soc. Interface 13, 34 (2004); R.M. Metzger: Electrochem. Soc. Interface 13, 40 (2004)

    Google Scholar 

  2. C.R. Kagan, M.A. Ratner: MRS Bull. 29, 376 (2004); M.C. Hersham, R.G. Reifenberger: MRS Bull. 29, 385 (2004); A.W. Ghosh, P. Damle, S. Datta, A. Nitzan: MRS Bull. 29, 391 (2004); J.G. Kushmerick, D.L. Allara, T.E. Mallouk, T.S. Mayer: MRS Bull. 29, 396 (2004)

    Article  Google Scholar 

  3. J.R. Heath, M.A. Ratner: Phys. Today 56, 43 (2003)

    Article  ADS  Google Scholar 

  4. K. Kwok, J. Ellenbogen: Mater. Today 5, 28 (2002)

    Article  Google Scholar 

  5. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour: Science 286, 1550 (1999)

    Article  Google Scholar 

  6. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, J.M. Tour: Appl. Phys. Lett. 78, 3735 (2001)

    Article  ADS  Google Scholar 

  7. J. Chen, M.A. Reed: Chem. Phys. 281, 127 (2002)

    Article  ADS  Google Scholar 

  8. W.Y. Wang, T. Lee, M.A. Reed: Phys. Rev. B 68, 035416 (2003)

    Article  ADS  Google Scholar 

  9. W.Y. Wang, T. Lee, I. Kretzschmar, M.A. Reed: NanoLetters 4, 643 (2004)

    Article  ADS  Google Scholar 

  10. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour: Science 278, 252 (1997)

    Article  Google Scholar 

  11. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, D.C. Ralph: Nature 417, 722 (2002)

    Article  ADS  Google Scholar 

  12. W. Liang, M.P. Shores, M. Bockrath, J.R. Long, H. Park: Nature 417, 725 (2002)

    Article  ADS  Google Scholar 

  13. C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath: Science 285, 391 (1999)

    Article  Google Scholar 

  14. C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, J.R. Heath: Science 289, 1172 (2000)

    Article  ADS  Google Scholar 

  15. D.R. Stewart, D.A.A. Ohlberg, P.A. Beck, Y. Chen, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart: Nanoletters 4, 133 (2004)

    Article  ADS  Google Scholar 

  16. J.G. Kushmerick, D.B. Holt, J.C. Yang, J. Naciri, M.H. Moore, R. Shashidhar: Phys. Rev. Lett. 89, 086802 (2002)

    Article  ADS  Google Scholar 

  17. C.A. Richter, C.A. Hacker, L.J. Richter, E.M. Vogel: Solid-State Electron. 48, 1747 (2004)

    Article  ADS  Google Scholar 

  18. R.F. Service: Science 302, 556 (2003)

    Article  Google Scholar 

  19. J.R. Heath, J.F. Stoddart, R.S. Williams, E.A. Chandross, P.S. Weiss, R.F. Service: Science 303, 1136 (2004)

    Article  Google Scholar 

  20. Y. Chen, G.-Y. Jung, D.A.A. Ohlberg, X.M. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, R.S. Williams: Nanotechnology 14, 462 (2003)

    Article  ADS  Google Scholar 

  21. Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.R. Tseng, T. Yamamoto, J.F. Stoddart, J.R. Heath: Chem. Phys. Chem. 3, 519 (2002)

    Google Scholar 

  22. G.Y. Jung, S. Ganapathiappan, X. Li, D.A.A. Ohlberg, D.L. Olynick, Y. Chen, W.M. Tong, R.S. Williams: Appl. Phys. A78, 1169 (2004)

    Google Scholar 

  23. N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P.M. Petroff, J.R. Heath: Science 300, 112 (2003)

    Article  ADS  Google Scholar 

  24. J. Chen, W. Wang, M.A. Reed, A.M. Rawlett, D.W. Price, J.M. Tour: Appl. Phys. Lett. 77, 1224 (2000)

    Article  ADS  Google Scholar 

  25. Y. Chen, D.A.A. Ohlberg, X. Li, D.R. Stewart, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, D.L. Olynick, E. Anderson: Appl. Phys. Lett. 83, 1610 (2003)

    Article  ADS  Google Scholar 

  26. Z.J. Donhauser, B.A. Mantooth, K.F. Kelly, L.A. Bumm, J.D. Monnell, J.J. Stapleton, D.W. Price, A.M. Rawlett, D.L. Allara, J.M. Tour, P.S. Weiss: Science 292, 2303 (2001)

    Article  Google Scholar 

  27. G.K. Ramachandran, T.J. Hopson, A.M. Rawlett, L.A. Nagahara, A. Primak, S.M. Lindsay: Science 300, 1413 (2003)

    Article  ADS  Google Scholar 

  28. D.I. Gittins, D. Bethell, D.J. Schiffrin, R.J. Nichols: Nature 408, 67 (2000)

    Article  ADS  Google Scholar 

  29. Qualitatively similar electrical results are obtained for devices fabricated from both native and plasma/deposited AlOx. All the data shown here are acquired from devices containing native AlOx

  30. E.P. Gusev, D.A. Buchanan, P. Jamison, T.H. Zabel, M. Copel: Microelectron. Eng. 48, 67 (1999)

    Article  Google Scholar 

  31. D.M. Brown, F.K. Heumann, H.R. Philipp, E.A. Taft: J. Electrochem. Soc. 115, 311 (1968)

    Article  Google Scholar 

  32. The two largest sources of uncertainty in the extraction of a ‘true’ physical thickness from capacitance in these devices are (a) the uncertainty in the permitivitty of the dielectrics and (b) the area of the device. For a given analysis model, a fixed value of permitivitty is chosen and therefore does not contribute to the uncertainty. Because a shadow mask is used for top metallization, the area of the devices is relatively poorly known. The uncertainty as determined by simple optical microscopy is 15% for a 70 μm2 device. A Hewlett-Packard model HP4284A LCR meter [33] was used to acquire capacitance (and conductance) as a function of voltage. The precision of this meter is high and the noise level of this system is low, so that small changes in the device capacitance (such as seen in Figs. 5 and 6) can be confidently observed. However, it is the absolute accuracy of the measurements (along with the chosen model and permittivities) that affects the extracted thickness parameters. The absolute accuracy is dependent upon the parameters of a given device under test. For typical eicosanoic acid devices presented here, the LCR meter is accurate to <≈1%. Unintentional stray capacitances arising from cabling and probe-station fixtures are also expected to affect the absolute accuracy of the measured value of capacitance. Thus, it is possible that there is a larger uncertainty than quoted in the extracted thickness values of the dielectric layers in these devices

  33. We identify certain commercial equipment, instruments, or materials in this article to specify adequately the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose

  34. L.P. Trombetta, F.J. Feigl, R.J. Zeto: J. Appl. Phys. 69, 2512 (1991)

    Article  ADS  Google Scholar 

  35. M.V. Fischetti: Phys. Rev. B 31, 2099 (1985)

    Article  ADS  Google Scholar 

  36. R.S. Scott, N.A. Dumin: IEEE Trans. Electron Devices 43, 130 (1996)

    Article  ADS  Google Scholar 

  37. R. Natarajan, D.J. Dumin: J. Electrochem. Soc. 142, 645 (1995)

    Article  Google Scholar 

  38. S.-C. Chang, Z. Li, C.N. Lau, B. Larade, R.S. Williams: Appl. Phys. Lett. 83, 3198 (2003)

    Article  ADS  Google Scholar 

  39. B. de Boer, M.M. Frank, Y.J. Chabal, W.R. Jiang, E. Garfunkel, Z. Bao: Langmuir 20, 1539 (2004)

    Article  Google Scholar 

  40. A.V. Walker, T.B. Tighe, J. Stapleton, B.C. Haynie, S. Upilli, D.L. Allara, N. Winograd: Appl. Phys. Lett. 84, 4008 (2004)

    Article  ADS  Google Scholar 

  41. K. Konstadinidis, P. Zhang, R.L. Opilla, D.L. Allara: Surf. Sci. 338, 300 (1995)

    Article  ADS  Google Scholar 

  42. R. McCreery, J. Dieringer, A.O. Solak, B. Snyder, A.M. Nowak, W.R. McGovern, S. DuVall: J. Am. Chem. Soc. 126, 6200 (2004)

    Article  Google Scholar 

  43. C.N. Lau, D.R. Stewart, R.S. Williams, M. Bockrath: NanoLetters 4, 569 (2004)

    Article  ADS  Google Scholar 

  44. R. McCreery, J. Dieringer, A.O. Solak, B. Snyder, A.M. Nowak, W.R. McGovern, S. DuVall: J. Am. Chem. Soc. 125, 10748 (2003)

    Article  Google Scholar 

  45. R. McCreery: personal communication

  46. W.R. McGovern, F. Anariba, R.L. McCreery: submitted

  47. D. Mardare, C. Baban, R. Gavrila, M. Modreanu, G.I. Rusu: Surf. Sci. 507510, 468 (2002)

    Google Scholar 

  48. S.A. Campbell, H.S. Kim, D.C. Gilmer, B. He, T. Ma, W.L. Gladfelter: IBM J. Res. Dev. 43, 383 (1999)

    Article  Google Scholar 

  49. Z.J. Donhauser, B.A. Mantooth, T.P. Pearl, K.F. Kelly, S.U. Nanayakkara, P.S. Weiss: Jpn. J. Appl. Phys. 41, 4871 (2002)

    Article  ADS  Google Scholar 

  50. D.L. Allara, R.G. Nuzzo: Langmuir 1, 45 (1985)

    Article  Google Scholar 

  51. D.L. Allara, R.G. Nuzzo: Langmuir 1, 52 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.A. Richter.

Additional information

PACS

85.65.+h; 73.40.Rw; 73.50.Gr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, C., Stewart, D., Ohlberg, D. et al. Electrical characterization of Al/AlOx/molecule/Ti/Al devices. Appl. Phys. A 80, 1355–1362 (2005). https://doi.org/10.1007/s00339-004-3169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3169-x

Keywords

Navigation