Skip to main content
Log in

Non-isothermal crystallization of monomer casting polyamide 6/functionalized MWNTs nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Monomer casting polyamide 6(MCPA6)/toluene 2,4-diisocyanate functionalized multi-walled carbon nanotubes (MWNTs-NCO) nanocomposites were prepared via in situ anionic ring opening polymerization, and the non-isothermal crystallization behavior of the nanocomposites were investigated by differential scanning calorimetry with various cooling rates. The commonly used Avrami, Ozawa, Mo, and Urbanovici–Segal models were employed to analyze the non-isothermal crystallization data and the validity of the models on the process of MCPA6 and its nanocomposites was discussed, where Mo and Urbanovici–Segal models could well describe the non-isothermal crystallization process for the samples. The results revealed that MWNTs could accelerate the crystallization process of MCPA6, attributing to the nucleating effect of the nanofillers. Finally, the effective energy barrier for non-isothermal crystallization was evaluated as a function of the relative crystallinity by applying an isoconversional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Crespy D, Landfester K (2005) Anionic polymerization of ε-caprolactam in miniemulsion: synthesis and characterization of polyamide-6 nanoparticles. Macromolecules 38:6882–6887

    Article  CAS  Google Scholar 

  2. Liu A, Xie T, Yang G (2006) Synthesis of exfoliated monomer casting polyamide 6/Na+-montmorillonite nanocomposites by anionic ring opening polymerization. Macromol Chem Phys 207:701–707

    Article  CAS  Google Scholar 

  3. Rusu G, Ueda K, Rusu E et al (2001) Polyamides from lactams by centrifugal molding via anionic ring-opening polymerization. Polymer 42:5669–5678

    Article  CAS  Google Scholar 

  4. Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627

    Article  CAS  Google Scholar 

  5. Wu D, Zhou C, Hong Z et al (2005) Study on rheological behaviour of poly(butylene terephthalate)/montmorillonite nanocomposites. Eur Polym J 41:2199–2207

    Article  CAS  Google Scholar 

  6. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  7. Spitalsky Z, Tasis D, Papagelis K et al (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  8. Wu TM, Chang HL, Lin YW (2009) Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. Compos Sci Technol 69:639–644

    Article  CAS  Google Scholar 

  9. Al-Rawajfeh AE, Al-Salah HA, AlShamaileh E et al (2008) Polyamide-based composite membranes: part 2. Interaction, crystallization and morphology. Desalination 227:120–131

    Article  CAS  Google Scholar 

  10. Custodio F, Steenbakkers RJA, Anderson PD et al (2009) Model development and validation of crystallization behavior in injection molding prototype flows. Macromol Theory Simul 18:469–494

    Article  CAS  Google Scholar 

  11. Kim KH, Isayev AI, Kwon K (2005) Flow-induced crystallization in the injection molding of polymers: a thermodynamic approach. J Appl Polym Sci 95:502–523

    Article  CAS  Google Scholar 

  12. Zhao C, Zhang P, Yi L et al (2008) Study on the non-isothermal crystallization kinetics of novel polyamide 6/silica nanocomposites containing epoxy resins. Polym Test 27:412–419

    Article  CAS  Google Scholar 

  13. Yuan Q, Awate S, Misra RDK (2006) Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur Polym J 42:1994–2003

    Article  CAS  Google Scholar 

  14. Hao W, Yang W, Cai H et al (2010) Non-isothermal crystallization kinetics of polypropylene/silicon nitride nanocomposites. Polym Test 29:527–533

    Article  CAS  Google Scholar 

  15. Xu JT, Wang Q, Fan ZQ (2005) Non-isothermal crystallization kinetics of exfoliated and intercalated polyethylene/montmorillonite nanocomposites prepared by in situ polymerization. Eur Polym J 41:3011–3017

    Article  CAS  Google Scholar 

  16. Kim HJ, Lee JJ, Kim JC et al (2010) Effect of starch content on the non-isothermal crystallization behavior of HDPE/silicate nanocomposites. J Ind Eng Chem 16:406–410

    Article  CAS  Google Scholar 

  17. Weng W, Chen G, Wu D (2003) Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites. Polymer 44:8119–8132

    Article  CAS  Google Scholar 

  18. Guo B, Zou Q, Lei Y et al (2009) Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim Acta 484:48–56

    Article  CAS  Google Scholar 

  19. Liu Y, Yang G (2010) Non-isothermal crystallization kinetics of polyamide-6/graphite oxide nanocomposites. Thermochim Acta 500:13–20

    Article  CAS  Google Scholar 

  20. Kuo MC, Huang JC, Chen M (2006) Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone). Mater Chem Phys 99:258–268

    Article  CAS  Google Scholar 

  21. Li J, Fang Z, Tong L et al (2006) Effect of multi-walled carbon nanotubes on non-isothermal crystallization kinetics of polyamide 6. Eur Polym J 42:3230–3235

    Article  CAS  Google Scholar 

  22. Lorenzo MLD, Cimmino S, Silvestre C (2001) Nonisothermal crystallization of isotactic polypropylene blended with poly(a-pinene). I. Bulk crystallization. J Appl Polym Sci 82:358–367

    Article  Google Scholar 

  23. Wunderlich B (1997) Thermal characterization of polymeric materials. In: Turi E (ed) 2rd. Academic Press, New York, pp 205–482

    Google Scholar 

  24. Avrami M (1939) Kinetics of phase change. J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  25. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 19:1142–1144

    Article  CAS  Google Scholar 

  26. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158

    Article  CAS  Google Scholar 

  27. Liu TX, Mo ZS, Wang SE (1997) Nonisothermal melt and cold crystallization kinetics of poly(arylether ether ketone ketone). Polym Eng Sci 37:568–575

    Article  CAS  Google Scholar 

  28. Papageorgiou GZ, Achilias DS, Bikiaris DN et al (2005) Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermochim Acta 427:117–128

    Article  CAS  Google Scholar 

  29. Urbanovici E, Segal E (1990) New formal relationships to describe the kinetics of crystallization. Thermochim Acta 171:87–94

    Article  CAS  Google Scholar 

  30. Zhou H, Ying J, Xie X et al (2010) Nonisothermal crystallization behavior and kinetics of isotactic polypropylene/ethylene–octene blends. Part II: modeling of crystallization kinetics. Polym Test 29:915–923

    Article  CAS  Google Scholar 

  31. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Stand 57:217–221

    CAS  Google Scholar 

  32. Vyazovkin S (2002) Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun 23:771–775

    Article  CAS  Google Scholar 

  33. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci C 6:183

    Google Scholar 

  34. Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22:178–183

    Article  CAS  Google Scholar 

  35. Vyazovkin S (1997) Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem 18:393–402

    Article  CAS  Google Scholar 

  36. Qiu S, Zheng Y, Zeng A et al (2011) Prediction of non-isothermal crystallization parameters for isotactic polypropylene. Thermochim Acta 512:28–33

    Article  CAS  Google Scholar 

  37. Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman–Lauritzen parameters (U* and Kg) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun 25:733–738

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Important Item of Science and Technology of Fujian province (Grand No. 2007HZ0001-2) for the financial support. We are also grateful to the Center Laboratory of Fuzhou University for provision of testing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuying Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, S., Zheng, Y., Zeng, A. et al. Non-isothermal crystallization of monomer casting polyamide 6/functionalized MWNTs nanocomposites. Polym. Bull. 67, 1945–1959 (2011). https://doi.org/10.1007/s00289-011-0613-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0613-x

Keywords

Navigation