Skip to main content
Log in

Interfacial adhesion study on UHMWPE fiber-reinforced composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ultrahigh molecular weight polyethylene (UHMWPE) fiber has many outstanding properties. However, poor interfacial adhesion of the UHMWPE fiber/polymer matrix interface limits its applications as reinforcement in high performance polymer matrix composites. Therefore, a new thermosetting resin system, named PCH, which is only composed of carbon and hydrogen elements, has been developed according to law of similar mutual solubility and the structural characteristics of UHMWPE fiber. The adhesion property was investigated by mechanical properties test, thermal performance test, and polymer solution properties test. Test results show that a strong interaction occurs between UHMWPE fiber and the PCH matrix due to the structural and polar similarity. In the case of slight difference between solubility parameters of UHMWPE fiber and cured PCH resin, it is found that the wettability of PCH resin on surface of the fiber can be improved and the difference between the coefficients of thermal expansion of the matrix and the fiber decreases with the increase of styrene added into the PCH. An optimal interfacial adhesion can be obtained as the ratio of PCH/styrene is approximately 55/45.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhamu A, Wingert M, Jana S, Zhong WH, Stone JJ (2007) Treatment of functionalized graphitic nanofibers (GNFs) and the adhesion of GNFs-reinforced-epoxy with ultra high molecular weight polyethylene fiber. Compos Part A Appl Sci Manuf 38:699–709

    Article  Google Scholar 

  2. Woods DW, Ward IM (1993) Study of the oxygen treatment of high-modulus polyethylene fibres. Surf Interface Anal 20:385–392

    Article  CAS  Google Scholar 

  3. Mercx FPM (1994) Improved adhesive properties of high-modulus polyethylene structures: 3. Air- and ammonia-plasma treatment. Polymer 35:2098–2107

    Article  CAS  Google Scholar 

  4. Tissington B, Pollard G, Ward IM (1992) A study of the effects of oxygen plasma treatment on the adhesion behaviour of polyethylene fibres. Compos Sci Technol 44:185–195

    Article  CAS  Google Scholar 

  5. Moon SI, Jang J (1999) The effect of the oxygen-plasma treatment of UHMWPE fiber on the transverse properties of UHMWPE-fiber/vinylester composites. Compos Sci Technol 59:487–493

    Article  CAS  Google Scholar 

  6. Chen JS, Lau SP, Sun Z, Tay BK, Yu GQ, Zhu FY, Zhu DZ, Xu HJ (2001) Structural and mechanical properties of nitrogen ion implanted ultra high molecular weight polyethylene. Surf Coat Technol 138:33–38

    Article  CAS  Google Scholar 

  7. Ujvari T, Toth A, Bertoti I, Nagy PM, Juhasz A (2001) Surface treatment of polyethylene by fast atom beams. Solid State Ionics 141:225–229

    Article  Google Scholar 

  8. Kondo Y, Miyazaki K, Yamaguchi Y, Sasaki T, Irie S, Sakurai K (2006) Mechanical properties of fiber reinforced styrene-butadiene rubbers using surface-modified UHMWPE fibers under EB irradiation. Eur Polym J 42:1008–1014

    Article  CAS  Google Scholar 

  9. Wang JL, Liang GZ, Zhao W, Lu SH, Zhang ZP (2006) Studies on surface modification of UHMWPE fibers via UV initiated grafting. Appl Surf Sci 253:668–673

    Article  CAS  Google Scholar 

  10. Mercx FPM, Benzina A, van Langeveld AD, Lemstra PJ (1993) Improved adhesive properties of high-modulus polyethylene structures: 1. Oxidative acid etching. J Mater Sci 28:753–759

    Article  CAS  Google Scholar 

  11. Lin SP, Han JL, Yeh JT, Chang FC, Hsieh KH (2007) Surface modification and physical properties of various UHMWPE-fiber-reinforced modified epoxy composites. J Appl Polym Sci 104:655–665

    Article  CAS  Google Scholar 

  12. Zhu D, Wang YX, Zhang XL, Cheng SJ (2010) Interfacial bond property of UHMWPE composite. Polym Bull 65:35–44

    Article  CAS  Google Scholar 

  13. Lee SG, Kang TJ (1998) Preparation and crystallization behavior of UHMWPE/LLDPE composites. Polym Bull 40:95–102

    Article  CAS  Google Scholar 

  14. Maity J, Jacob C, Das CK, Alam S, Singh RP (2008) Direct fluorination of UHMWPE fiber and preparation of fluorinated and non-fluorinated fiber composites with LDPE matrix. Polym Test 27:581–590

    Article  CAS  Google Scholar 

  15. Larin B, Feldman AY, Harel H, Marom G (2006) Morphology and mechanical properties of melt drawn chopped UHMWPE fiber/HDPE blends. Polym Eng Sci 46:807–811

    Article  CAS  Google Scholar 

  16. Zuo JD, Zhu YM, Liu SM, Jiang ZJ, Zhao JQ (2007) Preparation of HDPE/UHMWPE/MMWPE blends by two-step processing way and properties of blown films. Polym Bull 58:711–722

    Article  CAS  Google Scholar 

  17. Barkoula NM, Peijs T, Schimanski T, Loos J (2005) Processing of single polymer composites using the concept of constrained fibers. Polym Compos 26:114–120

    Article  CAS  Google Scholar 

  18. Ward IM, Hine PJ (2004) The science and technology of hot compaction. Polymer 45:1413–1427

    Article  CAS  Google Scholar 

  19. Hine PJ, Ward IM (2006) Hot compaction of woven nylon 6,6 multifilaments. J Appl Polym Sci 101:991–997

    Article  CAS  Google Scholar 

  20. Zhang JM, Peijs T (2010) Self-reinforced poly(ethylene terephthalate) composites by hot consolidation of Bi-component PET yarns. Compos Part A Appl Sci Manuf 41:964–972

    Article  Google Scholar 

  21. Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos Sci Technol 68:2201–2207

    Article  CAS  Google Scholar 

  22. Maffeo M, Cunniff PM (2000) Composite materials for small arms (ball round) protective armor. Revolut Mater Technol Econ 32:768–777

    CAS  Google Scholar 

  23. Hancock SG, Potter KD (2006) The use of kinematic drape modelling to inform the hand lay-up of complex composite components using woven reinforcements. Compos Part A Appl Sci Manuf 37:413–422

    Article  Google Scholar 

  24. Karlsson KF, Tomas Åström B (1997) Manufacturing and applications of structural sandwich components. Compos Part A Appl Sci Manuf 28:97–111

    Article  Google Scholar 

  25. Ren PG, Liang GZ, Zhang ZP (2006) Epoxy-modified cyanate ester resin and its high-modulus carbon–fiber composites. Polym Compos 27:402–409

    Article  Google Scholar 

  26. Shojaei A, Ghaffarian SR (2003) Modeling and simulation approaches in the resin transfer molding process: a review. Polym Compos 24:525–544

    Article  CAS  Google Scholar 

  27. Meijer G, Ellyin F (2008) A failure envelope for ±60 degrees filament wound glass fiber reinforced epoxy tubulars. Compos Part A Appl Sci Manuf 39:555–564

    Article  Google Scholar 

  28. Drzal LT, Madhukar M (1993) Fibre–matrix adhesion and its relationship to composite mechanical properties. J Mater Sci 28:569–610

    Article  CAS  Google Scholar 

  29. Wu HL, Ma CCM, Li CH, Chen CY (2006) Swelling behavior and solubility parameter of sulfonated poly(ether ether ketone). J Polym Sci B Polym Phys 44:3128–3134

    Article  CAS  Google Scholar 

  30. Peijs T, Rijsdijk HA, de Kok JMM, Lemstra PJ (1994) The role of interface and fiber anisotropy in controlling the performance of polyethylene–fiber-reinforced composites. Compos Sci Technol 52:449–466

    Article  CAS  Google Scholar 

  31. Neema S, Salehi-Khojin A, Zhamu A, Zhong WH, Jana S, Gan YX (2006) Wettability of nano-epoxies to UHMWPE fibers. J Colloid Interface Sci 299:332–341

    Article  CAS  Google Scholar 

  32. Salehi-Khojin A, Stone JJ, Zhong WH (2007) Improvement of interfacial adhesion between UHMWPE fiber and epoxy matrix using functionalized graphitic nanofibers. J Compos Mater 41:1163–1176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support by the National Natural Science Foundation of China (Grant No. 50773019) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoxian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Wang, Y., Lu, C. et al. Interfacial adhesion study on UHMWPE fiber-reinforced composites. Polym. Bull. 67, 527–540 (2011). https://doi.org/10.1007/s00289-011-0491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0491-2

Keywords

Navigation