Skip to main content
Log in

Improving oxidation stability and mechanical properties of natural rubber vulcanizates filled with calcium carbonate modified by gallic acid

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel technique to modify the surface of calcium carbonate (CaCO3) nanoparticles, used as an antioxidant and reinforcing filler, by gallic acid is disclosed. The new properties of the modified CaCO3 could make it more useful and practical for the rubber industry. Thermal gravimetric (TGA), Fourier transform infrared spectroscopy, and transmission electron microscopy analyses showed that the gallic acid was bound onto the surface of CaCO3. The gallic acid modified CaCO3 exhibited a significant antioxidation property, as revealed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) analysis. The mechanical properties of natural rubber vulcanizates filled with the gallic acid modified CaCO3 showed an enhanced reinforcement with increasing loading levels, and increased resistance to ozonolysis over that seen with the unmodified CaCO3 mixed with Irganox 1010 as the commercial antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roberts AD (1988) Natural rubber science and technology. Oxford University Press, New York

    Google Scholar 

  2. Donnet JB, Custodero E (2005) Reinforcement of elastomers by particulate fillers. In: Mark JE, Erman B, Eirich FR (eds) The science and technology of rubber. Elsevier Academic Press, San Diego, pp 367–400

    Chapter  Google Scholar 

  3. Kraus G (1965) Reinforcement of elastomers. Interscience Publishers, New York

    Google Scholar 

  4. Kraus G (1978) Reinforcement of elastomers by particulate fillers. In: Eirich FR (ed) Science and technology of rubber. Academic Press, New York, pp 339–365

    Google Scholar 

  5. Brydson JA (1988) Rubber materials and their compounds. Elsevier Applied Science, London

    Google Scholar 

  6. Baranwal KC, Stephens HL (2001) Basic elastomer technology. Rubber Division, Akron

    Google Scholar 

  7. Ohm RF (1990) The vanderbilt rubber handbook. RT Vanderbilt Company Inc, Norwalk

    Google Scholar 

  8. Mao Z, Huang J (2007) Habit modification of calcium carbonate in the presence of malic acid. J Solid State Chem 180:453–460. doi:10.1016/j.jssc.2006.11.002

    Article  CAS  Google Scholar 

  9. Premphet K, Horanont PJ (1999) Influence of stearic acid treatment of filler particles on the structure and properties of ternary-phase polypropylene composites. J Appl Polym Sci 74:3445–3454. doi:10.1002/(SICI)1097-4628(19991227)74:14<3445:AID-APP19>3.0.CO;2-0

    Article  Google Scholar 

  10. Xun-qiu W, Deng-gao J (2008) Modification of nanometer calcium carbonate for water-borne architectural coatings. J China Univ Min Technol 18:76–81

    Article  Google Scholar 

  11. Lipińska M, Zaborski M, Ślusarski L (2003) Modification of precipitated calcium carbonate to improve its activity toward elastomers. Macromol Symp 194:287–294. doi:10.1002/masy.200390095

    Article  Google Scholar 

  12. Nakatsuka T, Kawasaki H, Itadani K, Yamashita S (1981) Topochemical reaction of calcium carbonate and alkyl dihydrogenphosphate. J Colloid Interface Sci 82:298–306. doi:10.1016/0021-9797(81)90372-6

    Article  CAS  Google Scholar 

  13. Sharma YN, Patel RD, Dhimmar IH, Bhardwaj IS (1982) Studies of the effect of titanate coupling agent on the performance of polypropylene-calcium carbonate composite. J Appl Polym Sci 27:97–104 10.1002/app.1982.070270111

    Article  CAS  Google Scholar 

  14. Sheng Y, Zhu D, Wang J, Zhang L, Zhu Z (2008) Calcium carbonate surface coating modification and it’s effect on the mechanical properties of filled polypropylene. Acta Polym Sin 8:813–817. doi:10.3724/SP.J.1105.2008.00813

    Article  Google Scholar 

  15. Ma C, Rong M, Zhang M (2003) Influence of nano-CaCO3 and surface modification on the crystallization behavior of isotactic polypropylene. Acta Polym Sin 3:381–386

    Google Scholar 

  16. Venables R (1999) Reactive surface treatment for calcium carbonate filler in polypropylene. Compos Interface 6:65–79

    Google Scholar 

  17. Nakatsuka T, Yamashita S (1983) Reactions of functional polymethacrylates grafted on phosphate-modified calcium carbonate. J Appl Polym Sci 28:3549–3558 10.1002/app.1983.070281118

    Article  CAS  Google Scholar 

  18. Qiang F, Wang G, Liu C (1995) Polyethylene toughened by CaCO3 particles: the interface behaviour and fracture mechanism in high density polyethylene/CaCO3 blends. Polymer 36:2397–2401. doi:10.1016/0032-3861(95)97339-H

    Article  Google Scholar 

  19. Hanprasopwattana A, Srinivasan S, Sault AG, Datye AK (1996) Titania coatings on monodisperse silica spheres (characterization using 2-propanol dehydration and TEM). Langmuir 12:3173–3179. doi:10.1021/la950808a

    Article  CAS  Google Scholar 

  20. Miller HE, Rigelhof F, Marquart L, Prakash A, Kanter M (2000) Whole-grain products and antioxidants. Cereal Food World 45:59–63

    Google Scholar 

  21. Miller HE, Rigelhof F, Marquart L, Prakash A, Kanter M (2000) Antioxidant content of whole grain breakfast cereals, fruits and vegetables. J Am Coll Nutr 19:312S–319S

    CAS  Google Scholar 

  22. GarroGalvez JM, Fechtal M, Riedl B (1996) Gallic acid as a model of tannins in condensation with formaldehyde. Thermochim Acta 274:149–163. doi:10.1016/0040-6031(95)02630-4

    Article  CAS  Google Scholar 

  23. Xie AJ, Zhang CY, Shen YH, Qiu LG, Xiao PP, Hu ZY (2006) Morphologies of calcium carbonate crystallites grown from aqueous solutions containing polyethylene glycol. Cryst Res Technol 41:967–971. doi:10.1002/crat.200610706

    Article  CAS  Google Scholar 

  24. Litwinienko G, Ingold KU (2003) Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2,2-diphenyl-1-picrylhydrazyl (dpph•) in alcohols. J Org Chem 68:3433–3438. doi:10.1021/jo026917t

    Article  CAS  Google Scholar 

  25. Kong L, Sun ZL, Wang LF, Zhang HY, Yao SD (2004) Theoretical elucidation of the radical-scavenging-activity difference of hydroxycinnamic acid derivatives. Helv Chim Acta 87:511–515. doi:10.1002/hlca.200490048

    Article  CAS  Google Scholar 

  26. Zhang HY, Ji HF (2006) How vitamin E scavenges DPPH radicals in polar protic media. New J Chem 30:503–504. doi:10.1039/b600025h

    Article  CAS  Google Scholar 

  27. Zhang HY (1999) Theoretical elucidation of structure-activity relationship of flavonoid antioxidants. Sci China Ser B 42:106–112. doi:10.1007/BF02883044

    Article  CAS  Google Scholar 

  28. Sun S, Li C, Zhang L, Du HL, Burnell-Gray JS (2006) Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites. Eur Polym J 42:1643–1652. doi:10.1016/j.eurpolymj.2006.01.012

    Article  CAS  Google Scholar 

  29. Layer RW, Lattimer RP (1990) Protection of rubber against ozone. Rubber Chem Technol 63:426–450

    Article  CAS  Google Scholar 

  30. Son TT, Rotschová J, Pospíšil J (1983) Antioxidants and stabilizers 93. A model interaction of polyolefine melt stabilizer 2,2-thiobis(4,6-di-tert.butylphenol with tert. butylhydroperoxide. Polym Bull 9:121–124

    Article  Google Scholar 

  31. Allen NS, Edge M, Mourelatou D, Wilkinson A, Liauw CM, Parellada MD, Barrio JA, Quiteria VRS (2003) Influence of ozone on styrene-ethylene-butylene-styrene (SEBS) copolymer. Polym Degrad Stabil 79:297–307. doi:10.1016/S0141-3910(02)00293-8

    Article  CAS  Google Scholar 

  32. Layer RW (1966) Reaction of ozone with p-phenylene-diamine and related compounds. Rubber Chem Technol 39:1584–1592

    Article  CAS  Google Scholar 

  33. Razumovskii SD, Batashova LS (1970) Mechanism of protection against ozone by N-phenyl-N′-isopropyl-p-phenylenediamine. Rubber Chem Technol 43:1340–1348

    Article  Google Scholar 

  34. Erickson ER, Berntsen RA, Hill EL, Kusy P (1959) The reaction of ozone with SBR rubbers. Rubber Chem Technol 32:1062–1079

    Article  Google Scholar 

  35. Lake GJ (1970) Ozone cracking and protection of rubber. Rubber Chem Technol 43:1230–1254

    Article  Google Scholar 

  36. Braden M, Gent AN (1962) The mechanics of ozone cracking. Rubber Chem Technol 35:200–209

    Article  Google Scholar 

  37. Lorenz O, Parks CR (1963) Mechanism of antiozonant action. I. Consumption of p-phenylenediamines in rubber vulcanizates during ozonization. Rubber Chem Technol 36:194–200

    Article  CAS  Google Scholar 

  38. Lattimer RP, Hooser ER, Diem E, Layer W, Rhee CK (1980) Mechanisms of ozonation of N,N′-di-(1-methylheptyl)-p-phenylenediamine. Rubber Chem Technol 53:1170–1190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding support from Thailand Research Fund No. MRG5080151 (2007) and Center for Petroleum, Petrochemicals and Advanced Materials. The authors also wish to express their thanks to Shiraishi Calcium (Thailand) Co., Ltd. for supplying the nano-CaCO3, the Publication Counseling Unit (PCU) of the Faculty of Science, Chulalongkorn University and Dr. Robert D.J. Butcher for comments, suggestions and checking the grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirilux Poompradub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poompradub, S., Luthikaviboon, T., Linpoo, S. et al. Improving oxidation stability and mechanical properties of natural rubber vulcanizates filled with calcium carbonate modified by gallic acid. Polym. Bull. 66, 965–977 (2011). https://doi.org/10.1007/s00289-010-0396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0396-5

Keywords

Navigation