Skip to main content
Log in

Tensile properties of random copolymers of propylene with ethylene and 1-butene: effect of crystallinity and crystal habit

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The tensile modulus of elasticity and yield strength of semicrystalline random copolymers of propylene with different amount on ethylene or 1-butene co-units were analyzed as a function of the crystallinity and the crystal habit/shape. Samples were prepared by cooling the melt to ambient temperature, and subsequent annealing at elevated temperature. Variation of the cooling rate between 10−1 and 103 K s−1 and of the temperature of annealing allowed preparation of semicrystalline specimens with either lamellar or non-lamellar crystals of different size, and with different crystallinity between about 30 and 70%. Young’s modulus and yield strength increase with increasing crystallinity and consistently are lower for samples containing nodular, that is, almost isometric, non-lamellar crystals of low aspect ratio. For samples of identical crystallinity and crystal habit, an only minor effect of presence of co-units in the crystalline and amorphous phases is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Piccarolo S (1992) Morphological changes in isotactic polypropylene as a function of cooling rate. J Macromol Sci Phys B 31:501–511

    Article  Google Scholar 

  2. Zia Q, Androsch R, Radusch HJ, Piccarolo S (2006) Morphology, reorganization, and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 47:8163–8172

    Article  CAS  Google Scholar 

  3. Binsbergen FL, De Lange BGM (1968) Morphology of polypropylene crystallized from the melt. Polymer 9:23–40

    Article  CAS  Google Scholar 

  4. Bassett DC, Olley RH (1984) On the lamellar morphology of isotactic polypropylene spherulites. Polymer 25:935–943

    Article  CAS  Google Scholar 

  5. Olley RH, Bassett DC (1989) On the development of polypropylene spherulites. Polymer 30:399–409

    Article  CAS  Google Scholar 

  6. Gezovich DM, Geil PH (1968) Morphology of quenched polypropylene. Polym Eng Sci 8:202–207

    Article  CAS  Google Scholar 

  7. Hsu CC, Geil PH, Miyaji H, Asai K (1986) Structure and properties of polypropylene crystallized from the glassy state. J Polym Sci Polym Phys 24:2379–2401

    Article  CAS  Google Scholar 

  8. Ogawa T, Miyaji H, Asai K (1985) Nodular structure of polypropylene. J Phys Soc Jpn 54:3668–3670

    Article  CAS  Google Scholar 

  9. De Santis F, Adamovsky S, Titomanlio G, Schick C (2006) Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules 39:2562–2567

    Article  CAS  Google Scholar 

  10. Gradys A, Sajkiewicz P, Minakov AA, Adamovsky S, Schick C, Hashimoto T, Saijo K (2005) Crystallization of polypropylene at various cooling rates. Mat Sci Eng A413–A414:442–446

    Google Scholar 

  11. Zannetti R, Celotti G, Fichera A, Francesconi R (1969) The structural effects of annealing time and temperature on the paracrystal–crystal transition in isotactic polypropylene. Makromol Chem 128:137–142

    Article  CAS  Google Scholar 

  12. O’Kane WJ, Young RJ, Ryan AJ, Bras W, Derbyshire GE, Mant GR (1994) Simultaneous SAXS/WAXS and d.s.c. analysis of the melting and recrystallization behaviour of quenched polypropylene. Polymer 35:1352–1358

    Article  Google Scholar 

  13. Wang ZG, Hsiao BS, Srinivas S, Brown GM, Tsou AH, Cheng SZD, Stein RS (2001) Phase transformation in quenched mesomorphic isotactic polypropylene. Polymer 42:7561–7566

    Article  CAS  Google Scholar 

  14. Androsch R (2008) In situ atomic force microscopy of the mesomorphic–monoclinic phase transition in isotactic polypropylene. Macromolecules 41:533–535

    Article  CAS  Google Scholar 

  15. Zia Q, Radusch HJ, Androsch R (2007) Direct analysis of annealing of nodular crystals in isotactic polypropylene by atomic force microscopy, and its correlation with calorimetric data. Polymer 48:3504–3511

    Article  CAS  Google Scholar 

  16. Farrow G (1963) Crystallinity, ‘crystallite size’ and melting point of polypropylene. Polymer 4:191–197

    Article  CAS  Google Scholar 

  17. Martorana A, Piccarolo S, Sapoundjieva D (1999) SAXS/WAXS study of the annealing process in quenched samples of iostactic poly(propylene). Macromol Chem Phys 200:531–540

    Article  CAS  Google Scholar 

  18. Natale R, Russo R, Vittoria V (1992) Crystallinity of isotactic polypropylene films annealed from the quenched state. J Mater Sci 27:4350–4354

    Article  CAS  Google Scholar 

  19. Zia Q, Androsch R, Radusch HJ (2010) Effect of the structure at the micrometer and nanometer scales on the light transmission of isotactic polypropylene. J Appl Polym Sci 117:1013–1020

    Article  CAS  Google Scholar 

  20. Zia Q, Radusch HJ, Androsch R (2009) Deformation behavior of isotactic polypropylene crystallized via a mesophase. Polym Bull 63:755–771

    Article  CAS  Google Scholar 

  21. De Rosa C, Auriemma F, Ruiz de Ballesteros O, Resconi L, Camurati I (2007) Crystallization behavior of isotactic propylene–ethylene and propylene–butene copolymers: effect of comonomers versus stereodefects on crystallization properties of isotactic polypropylene. Macromolecules 40:6600–6616

    Article  CAS  Google Scholar 

  22. De Rosa C, Auriemma F, Ruiz de Ballesteros O, Resconi L, Camurati I (2007) Tailoring the physical properties of isotactic polypropylene through incorporation of comonomers and the precise control of stereo- and regioregularity by metallocene catalysts. Chem Mater 19:5122–5130

    Article  CAS  Google Scholar 

  23. Hosier IL, Alamo RG, Lin JS (2004) Lamellar morphology of random metallocene propylene copolymers studied by atomic force microscopy. Polymer 45:3441–3455

    Article  CAS  Google Scholar 

  24. Jeon K, Palza H, Quijada R, Alamo RG (2009) Effect of comonomer type on the crystallization kinetics and crystalline structure of random isotactic propylene 1-alkene copolymers. Polymer 50:832–844

    Article  CAS  Google Scholar 

  25. Poon BC, Dias P, Ansems P, Chum SP, Hiltner A, Baer E (2007) Structure and deformation of an elastomeric propylene–ethylene copolymer. J Appl Polym Sci 104:489–499

    Article  CAS  Google Scholar 

  26. Poon B, Rogunova M, Hiltner A, Baer E, Chum SP, Galeski A, Piorkowska E (2005) Structure and properties of homogeneous copolymers of propylene and 1-hexene. Macromolecules 38:1232–1243

    Article  CAS  Google Scholar 

  27. Poon B, Rogunova M, Chum SP, Hiltner A, Baer E (2004) Classification of homogeneous copolymers of propylene and 1-octene based on comonomer content. J Polym Sci Polym Phys 42:4357–4370

    Article  CAS  Google Scholar 

  28. Mileva D, Androsch R, Radusch HJ (2008) Effect of cooling rate on melt-crystallization of random propylene–ethylene and propylene-1-butene copolymers. Polym Bull 61:643–654

    Article  CAS  Google Scholar 

  29. Mileva D, Zia Q, Androsch R, Radusch HJ, Piccarolo S (2009) Mesophase formation in poly(propylene-ran-1-butene) by rapid cooling. Polymer 50:5482–5489

    Article  CAS  Google Scholar 

  30. Mileva D, Androsch R, Zhuravlev E, Schick C (2009) Critical rate of cooling for suppression of crystallization in random copolymers of propylene with ethylene and 1-butene. Thermochim Acta 492:67–72

    Article  CAS  Google Scholar 

  31. Foresta T, Piccarolo S, Goldbeck-Wood G (2001) Competition between α and γ phases in isotactic polypropylene: effects of ethylene content and nucleating agents at different cooling rates. Polymer 42:1167–1176

    Article  CAS  Google Scholar 

  32. Zia Q, Androsch R, Radusch HJ, Ingolič E (2008) Crystal morphology of rapidly cooled isotactic polypropylene: a comparative study by TEM and AFM. Polym Bull 60:791–798

    Article  CAS  Google Scholar 

  33. Androsch R, Wunderlich B (2001) Heat of fusion of the local equilibrium of melting of isotactic polypropylene. Macromolecules 34:8384–8387

    Article  CAS  Google Scholar 

  34. Androsch R, Wunderlich B (2001) Reversible crystallization and melting at the lateral surface of isotactic polypropylene crystals. Macromolecules 34:5950–5960

    Article  CAS  Google Scholar 

  35. Brucato V, Piccarolo S, La Carrubba V (2002) An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates. Chem Eng Sci 57:4129–4143

    Article  CAS  Google Scholar 

  36. Piccarolo S, Alessi S, Brucato V, Titomanlio G (1993) Crystallization behaviour at high cooling rates of two polypropylenes. In: Dosiere M (ed) Crystallization of polymers. Kluwer, Dordrecht, pp 475–480

    Google Scholar 

  37. Flory PJ (1954) Theory of crystallization in copolymers. Trans Faraday Soc 1:848–857

    Google Scholar 

  38. Sanchez IC, Eby RK (1975) Thermodynamics and crystallization of random copolymers. Macromolecules 8:638–641

    Article  CAS  Google Scholar 

  39. Jeon K, Chiari YL, Alamo RG (2008) Maximum rate of crystallization and morphology of random propylene ethylene copolymers as a function of comonomer content up to 21 mol %. Macromolecules 41:95–108

    Article  CAS  Google Scholar 

  40. Hoffmann JD, Davis GT, Lauritzen JI Jr (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay HB (ed) Treatise on solid state chemistry, crystalline and noncrystalline solids, vol 3. Plenum Press, New York

    Google Scholar 

  41. Seitz JT (1993) The estimation of mechanical properties of polymers from molecular structure. J Appl Polym Sci 49:1331–1351

    Article  CAS  Google Scholar 

  42. Rowe RC, Roberts RJ (1995) Interrelationships between the yield stress, tensile fracture strength and Young’s modulus of elasticity of films prepared from cellulose ethers and esters. J Mater Sci Lett 14:420–421

    Article  CAS  Google Scholar 

  43. Halpin JC, Kardos JL (1972) Moduli of crystalline polymers employing composite theory. J Appl Phys 43:2234–2241

    Article  Google Scholar 

  44. Kardos JL, Raisoni J (1975) The potential mechanical response of macromolecular systems—a composite analogy. Polym Eng Sci 15:183–190

    Article  CAS  Google Scholar 

  45. Kardos JL, Piccarolo S, Halpin JC (1978) Strength of discontinuous reinforced composites: II. Isotropic crystalline polymers. Polym Eng Sci 18:505–511

    Article  CAS  Google Scholar 

  46. Bédoui F, Diani J, Régnier G (2004) Micromechanical modeling of elastic properties in polyolefins. Polymer 45:2433–2442

    Article  CAS  Google Scholar 

  47. Pukanszky B, Mudra I, Staniek P (1997) Relation of crystalline structure and mechanical properties of nucleated polypropylene. J Vinyl Addit Technol 3:53–57

    Article  CAS  Google Scholar 

  48. Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z Angew Math Mech 9:49–58

    Article  CAS  Google Scholar 

  49. Balta Calleja FJ, Fakirov S (2000) Microhardness of polymers. Cambridge University Press, Cambridge

    Book  Google Scholar 

  50. Tranchida D, Bartczak Z, Bielinski D, Kiflie Z, Galeski A, Piccarolo S (2009) Linking structure and nanomechanical properties via instrumented nanoindentations on well-defined and fine-tuned morphology poly(ethylene). Polymer 50:1939–1947

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support by the Deutsche Forschungsgemeinschaft (DFG) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Androsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mileva, D., Zia, Q. & Androsch, R. Tensile properties of random copolymers of propylene with ethylene and 1-butene: effect of crystallinity and crystal habit. Polym. Bull. 65, 623–634 (2010). https://doi.org/10.1007/s00289-010-0274-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0274-1

Keywords

Navigation