Skip to main content
Log in

High-density polyethylene pipe with high resistance to slow crack growth prepared via rotation extrusion

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Slow crack growth (SCG) is one failure principal mode in polyethylene (PE) pressure pipe applications. In the conventional extrusion process, the molecular chains in the plastic pipes are oriented along the axial direction, which are disadvantageous to their resistance to SCG. In order to change the orientation direction of molecules in the plastic pipe, a new rotation extrusion processing system was designed to extrude high-density polyethylene (HDPE) pipes, and a thorough research was done on the effect of the rotation speed on its microstructure and resistance to SCG during the rotation extrusion. The experimental results showed that when the die rotated during the extrusion process of PE pipes, the hoop stress exerted on the polymer melt could make the molecular orientation deviate from the axial direction, and therefore the consequent multi-axial orientation of molecular chains could be obtained. As a result, the PE pipe with better resistance to SCG was prepared. Compared to the PE pipe produced by the conventional extrusion, the crack initiation time of the PE pipe manufactured by the novel method increased from 27 to 57 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scheirs J, Bohm LL, Boot JC, Leevers PS (1996) PE 100 resins for pipe applications: continuing the development into the 21st century. Trends Polym Sci 4(12):408–415

    CAS  Google Scholar 

  2. Stewart R (2005) Plastic pipe. Plast Eng 61(1):14–21

    Google Scholar 

  3. Gedde UW, Viebke J, Leijstrom H, Ifwarson M (1994) Long-term properties of hot-water polyolefin pipes: a review. Polym Eng Sci 34(24):1773–1787

    Article  CAS  Google Scholar 

  4. Chan MKV, Williams JG (1983) Slow stable crack growth in high density polyethylene. Polymer 24(2):234–244

    Article  CAS  Google Scholar 

  5. Huang YL, Brown N (1988) The effect of molecular weight on slow crack growth in linear polyethylene homopolymers. J Mater Sci 23(10):3648–3655

    Article  CAS  Google Scholar 

  6. Lu XC, Zhou ZQ, Brown N (1997) A sensitive mechanical test for slow crack growth in polyethylene. Polym Eng Sci 37(11):1896–1900

    Article  CAS  Google Scholar 

  7. Bubeck RA (2002) Structure–property relationships in metallocene polyethylenes. Mater Sci Eng R 39(1):1–28

    Article  Google Scholar 

  8. DesLauriers PJ, McDaniel MP, Rohlfing DC, Krishnaswamy RK, Secora SJ, Benham EA, Maeger PL, Wolfe AR, Sukhadia AM, Beaulieu BB (2005) A comparative study of multimodal vs. bimodal polyethylene pipe resins for PE-100 applications. Polym Eng Sci 45(16):1203–1213

    Article  CAS  Google Scholar 

  9. Gent AN, Gregory BL, Jeong J, Charrier JM, Hamel F (1987) Effect of a separator in a sheet die on the anisotropy of tear strength of extruded medium density polyethylene. Polym Eng Sci 27(22):1675–1680

    Article  CAS  Google Scholar 

  10. Faulkner DL (1984) Anisotropic aspects of the environmental stress cracking of acrylonitrile-butadiene-styrene and styrene acrylonitrile copolymers in methanol. Polym Eng Sci 24(15):1174–1179

    Article  CAS  Google Scholar 

  11. Lu XC, Qian R, Brown N, Buczala G (1992) The effect of pressure and contaminants on slow crack growth in a butt fusion in a polyethylene gas pipe. J Appl Polym Sci 46(8):1417–1427

    Article  CAS  Google Scholar 

  12. Trifonova D, Drouillon P, Ghanem A, Vancso GJ (1998) Morphology of extruded high-density polyethylene pipes studied by atomic force microscopy. J Appl Polym Sci 66(3):512–523

    Google Scholar 

  13. Lear JJ (1990) Slow crack growth and associated plastic deformation in linear medium-density polyethylene. Dissertation, University of Illinois at Urbana-Champaign

  14. Singh PN, Jha PK (1980) Elementary mechanics of solids. Wiley Eastern Ltd, Delhi

    Google Scholar 

  15. Zhang JY (2006) Experimental study of stress cracking in high density polyethylene pipe. Dissertation, Drexel University

  16. Hsiao BS, Yang L, Somani RH, Orta CAA, Zhu L (2005) Unexpected shish-kebab structure in a sheared polyethylene melt. Phys Rev Lett 94(11):117802.1–117802.4

    Article  Google Scholar 

  17. Donald HJ (1966) US Patent 3,279,501, 18 Oct 1966

  18. Groos B (1964) UK Patent 946,371, 15 Jan 1964

  19. Worth RA (1980) Modification to weld lines in extruded thermoplastic pipe using a rotating die system. Polym Eng Sci 20(8):551–554

    Article  CAS  Google Scholar 

  20. Martins MR, Covas JA (2006) Helical flow during rotation pipe extrusion. Plast Rubber Compos 5(2):59–66

    Article  Google Scholar 

  21. Deberdeev RY, Zuev BM, Bezruk LI, Bortnikov VG, Kuznetsov EV (1974) The properties of pipes produced under the conditions of spiral flow. Int J Polym Mater 3(3):177–191

    Article  CAS  Google Scholar 

  22. Chung B, Zachariades AE (1989) Morphological and mechanical property studies of polymer extrudates obtained by the rotation extrusion process. Polym Eng Sci 29(21):1511–1515

    Article  CAS  Google Scholar 

  23. Jiang L, Shen KZ, Ji JL, Guan Q (1998) A mandrel-rotating die to produce high-hoop-strength HDPE pipe by self-reinforcement. J Appl Polym Sci 69(2):323–328

    Article  Google Scholar 

  24. Wang Q, Zhang J, Guo Y, Bai SB, Hua ZK (2008) CN Patent 101,337,425, 7 Jan 2008

  25. Wang Q (2008) Novel processing technologies for polyolefins with high performances. UK Polymer Showcase 2008. York, UK

  26. Bao LX, Bai SB, Wang Q (2009) Slow crack growth resistance of the polyethylene pipes prepared by mandrel rotating extrusion. China Plast Ind 37(2):18–21

    CAS  Google Scholar 

  27. Olley RH, Bassett DC (1982) An improved permanganic etchant for polyolefines. Polymer 23(12):1707–1710

    Article  CAS  Google Scholar 

  28. Lu XC, Zhou ZQ, Brown N (1994) The anisotropy of slow crack growth in polyethylene pipes. Polym Eng Sci 34(2):109–115

    Article  CAS  Google Scholar 

  29. Rose LJ, Channell AD, Frye CJ, Capaccio G (1994) Slow crack growth in polyethylene: a novel predictive model based on the creep of craze fibrils. J Appl Polym Sci 54(13):2119–2124

    Article  CAS  Google Scholar 

  30. Lagasse RR, Maxwell B (1976) An experimental study of the kinetics of polymer crystallization during shear flow. Polym Eng Sci 16(3):189–199

    Article  CAS  Google Scholar 

  31. Garcia RA, Carrero A, Aroca M, Prieto O, Dominguez C (2008) Slow crack growth resistance in resin blends of chromium and metallocene catalyzed ethylene-hexene copolymers for pipe applications. Polym Eng Sci 48(5):925–933

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors greatly acknowledged the financial support of the Special Funds for Major State Basic Research Projects of China (2005CB623808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, M., Bai, S. & Wang, Q. High-density polyethylene pipe with high resistance to slow crack growth prepared via rotation extrusion. Polym. Bull. 65, 609–621 (2010). https://doi.org/10.1007/s00289-010-0270-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0270-5

Keywords

Navigation