Skip to main content
Log in

Deformation behavior of isotactic polypropylene crystallized via a mesophase

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The mechanical behavior of semicrystalline isotactic polypropylene (iPP) of different crystallinity, crystal morphology and superstructure was investigated by standard tensile stress–strain analysis, dynamic-mechanical analysis, and in situ observation of the deformation by atomic force microscopy (AFM). Emphasis is put on the comparison of the mechanical characteristics of specimens containing either non-isometric lamellae, being arranged in spherulites, or nodular isometric domains, which are not organized in a superstructure. The formation of lamellae/spherulites and of nodules was controlled by the conditions of crystallization. The replacement of cross-hatched monoclinic lamellae and a spherulitic superstructure by randomly arranged isometric nodules leads to a distinct increase of the ductility and toughness, even if the crystallinity is identical. The modulus of elasticity and the yield stress increase as expected with increasing crystallinity. Slightly lower values of Young’s modulus and yield strength are detected if samples contained non-lamellar crystals in a non-spherulitic superstructure, proving an effect of the crystal shape on the deformation behavior. For the first time, tensile deformation of semicrystalline iPP which contains nodular ordered domains instead of lamellae has been followed by in situ AFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pasquini N, Addeo A (2005) Polypropylene handbook. Hanser, Munich

    Google Scholar 

  2. Holliday L, White JW (1971) Stiffness of polymers in relation to their structure. Pure Appl Chem 26:545–582

    Article  CAS  Google Scholar 

  3. Pritchard R (1964) The transparency of crystalline polymers. SPE Trans 4:66–71

    CAS  Google Scholar 

  4. Mileva D, Androsch R, Radusch HJ (2009) Effect of structure on light transmission in isotactic polypropylene and random propylene-1-butene copolymers. Polym Bull 62:561–571

    Article  CAS  Google Scholar 

  5. Zia Q, Androsch R, Radusch HJ, Piccarolo S (2006) Morphology, reorganization and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 47:8163–8172

    Article  CAS  Google Scholar 

  6. Zia Q, Radusch HJ, Androsch R (2007) Direct analysis of annealing of nodular crystals in isotactic polypropylene by atomic force microscopy, and its correlation with calorimetric data. Polymer 48:3504–3511

    Article  CAS  Google Scholar 

  7. Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Nuovo Cimento 15(Suppl 1):40–51

    CAS  Google Scholar 

  8. Addink EJ, Beintema J (1961) Polymorphism of crystalline polypropylene. Polymer 2:185–193

    Article  CAS  Google Scholar 

  9. Gezovich DM, Geil PH (1968) Morphology of quenched polypropylene. Polym Eng Sci 8:202–207

    Article  CAS  Google Scholar 

  10. Hsu CC, Geil PH, Miyaji H, Asai K (1986) Structure and properties of polypropylene crystallized from the glassy state. J Polym Sci B Polym Phys 24:2379–2401

    Article  CAS  Google Scholar 

  11. Piccarolo S (1992) Morphological changes in isotactic polypropylene as a function of cooling rate. J Macromol Sci B 31:501–511

    Article  Google Scholar 

  12. Silvestre C, Cimmino S, Duraccio D, Schick C (2007) Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Commun 28:875–881

    Article  CAS  Google Scholar 

  13. Zannetti R, Celotti G, Fichera A, Francesconi R (1969) The structural effects of annealing time and temperature on the paracrystal–crystal transition in isotactic polypropylene. Die Makromol Chem 128:137–142

    Article  CAS  Google Scholar 

  14. Androsch R (2008) In situ atomic force microscopy of the mesomorphic–monoclinic phase transition in isotactic polypropylene. Macromolecules 41:533–535

    Article  CAS  Google Scholar 

  15. Natale R, Russo R, Vittoria V (1992) Crystallinity of isotactic polypropylene films annealed from the quenched state. J Mater Sci 27:4350–4354

    Article  CAS  Google Scholar 

  16. Peterlin A (1971) Molecular model of drawing polyethylene and polypropylene. J Mater Sci 6:490–508

    Article  CAS  Google Scholar 

  17. Bowden PB, Young RJ (1974) Deformation mechanisms in crystalline polymers. J Mater Sci 9:2034–2051

    Article  CAS  Google Scholar 

  18. Lin L, Argon AS (1994) Structure and plastic deformation of polyethylene. J Mater Sci 29:294–323

    Article  CAS  Google Scholar 

  19. Aboulfaraj M, G’Sell C, Ulrich B, Dahoun A (1995) In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope. Polymer 36:731–742

    Article  CAS  Google Scholar 

  20. Pang Y, Dong X, Liu K, Han CC, Chen E, Wang D (2008) Ductile–brittle transition controlled by isothermal crystallization of isotactic polypropylene and its blend with poly(ethylene-co-octene). Polymer 49:4259–4270

    Article  CAS  Google Scholar 

  21. Lotz B, Wittmann JC (1986) The molecular origin of lamellar branching in the α (monoclinic) form of isotactic polypropylene. J Polym Sci B Polym Phys 24:1541–1558

    Article  CAS  Google Scholar 

  22. Karger-Kocsis J, Varga J (1996) Effects of β–α transformation on the static and dynamic tensile behavior of isotactic polypropylene. J Appl Polym Sci 62:291–300

    Article  CAS  Google Scholar 

  23. Kotek J, Raab M, Baldrian J, Grellmann W (2002) The effect of specific β-nucleation on morphology and mechanical behavior of isotactic polypropylene. J Appl Polym Sci 85:1174–1184

    Article  CAS  Google Scholar 

  24. Gezovich DM, Geil PH (1968) Deformation and aging of quenched polypropylene. Polym Eng Sci 8:210–215

    Article  CAS  Google Scholar 

  25. Seguela R, Staniek E, Escaig B, Fillon B (1999) Plastic deformation of polypropylene in relation to crystalline structure. J Appl Polym Sci 71:1873–1885

    Article  CAS  Google Scholar 

  26. De Candia F, Russo R, Vittoria V (1987) Mechanical behavior of quenched isotactic polypropylene crystallized by thermal and solvent treatments. J Appl Polym Sci 34:689–701

    Article  Google Scholar 

  27. Ferrer-Balas D, Maspoch MLL, Martinez AB, Santana OO (2001) Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films. Polymer 42:1697–1705

    Article  CAS  Google Scholar 

  28. Way JL, Atkinson JR, Nutting J (1974) The effect of spherulite size on the fracture morphology of polypropylene. J Mater Sci 9:293–299

    Article  CAS  Google Scholar 

  29. Remaly LS, Schultz JM (1970) Time-dependent effect of spherulite size on the tensile behavior of polypropylene. J Appl Polym Sci 14:1871–1877

    Article  CAS  Google Scholar 

  30. Koike Y, Cakmak M (2004) Atomic force microscopy observations on the structure development during uniaxial stretching of PP from partially molten state: effect of isotacticity. Macromolecules 37:2117–2181

    Article  Google Scholar 

  31. Crämer K, Schneider M, Mülhaupt R, Cantow HJ, Magonov SN (1994) Scanning force microscopy of oriented iso- and syndiotactic polypropylene films. Polym Bull 32:637–644

    Article  Google Scholar 

  32. Brucato V, Piccarolo S, La Carrubba V (2002) An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates. Chem Eng Sci 57:4129–4143

    Article  CAS  Google Scholar 

  33. De Santis F, Adamovsky S, Titomanlio G, Schick C (2006) Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules 39:2562–2567

    Article  Google Scholar 

  34. Zia Q, Mileva D, Androsch R (2008) Rigid amorphous fraction in isotactic polypropylene. Macromolecules 41:8095–8102

    Article  CAS  Google Scholar 

  35. McGee S, McCullough RL (1981) Combining rules for predicting the thermoelastic properties of particulate filled polymers, polyblends, and foams. Polym Compos 2:149–161

    Article  CAS  Google Scholar 

  36. Seitz JT (1993) The estimation of mechanical properties of polymers from molecular structure. J Appl Polym Sci 49:1331–1351

    Article  CAS  Google Scholar 

  37. Rowe RC, Roberts RJ (1995) Interrelationships between the yield stress, tensile fracture strength and Young’s modulus of elasticity of films prepared from cellulose ethers and esters. J Mater Sci Lett 14:420–421

    Article  CAS  Google Scholar 

  38. Graham JT, Alamo RG, Mandelkern L (1997) The effect of molecular weight and crystallite structure on yielding in ethylene copolymers. J Polym Sci B Polym Phys 35:213–223

    Article  CAS  Google Scholar 

  39. Androsch R, Stribeck N, Lüpke T, Funari SS (2002) Investigation of the deformation of homogeneous poly(ethylene-co-1-octene) by wide- and small-angle X-ray scattering using synchrotron radiation. J Polym Sci B Polym Phys 40:1919–1930

    Article  CAS  Google Scholar 

  40. Zia Q, Androsch R, Radusch HJ, Ingolič E (2008) Crystal morphology of rapidly cooled isotactic polypropylene: a comparative study by TEM and AFM. Polym Bull 60:791–798

    Article  CAS  Google Scholar 

  41. Crist B, Fisher CJ, Howard PR (1989) Mechanical properties of model polyethylenes: tensile elastic modulus and yield stress. Macromolecules 22:1709–1718

    Article  CAS  Google Scholar 

  42. Boyd RH (1983) The mechanical moduli of lamellar semicrystalline polymers. J Polym Sci B Polym Phys 21:493–504

    CAS  Google Scholar 

  43. Doyle MJ (2000) On the effect of crystallinity on the elastic properties of semicrystalline polyethylene. Polym Eng Sci 40:330–335

    Article  CAS  Google Scholar 

  44. Halpin JC, Kardos JL (1976) Halpin-Tsai equations: a review. Polym Eng Sci 16:344–352

    Article  CAS  Google Scholar 

  45. Bédoui F, Diani J, Régnier G (2004) Micromechanical modeling of elastic properties in polyolefins. Polymer 45:2433–2442

    Article  Google Scholar 

Download references

Acknowledgment

Financial support by the Deutsche Forschungsgemeinschaft (DFG) and the ministry of culture of Saxony-Anhalt (Germany) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Androsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zia, Q., Radusch, HJ. & Androsch, R. Deformation behavior of isotactic polypropylene crystallized via a mesophase. Polym. Bull. 63, 755–771 (2009). https://doi.org/10.1007/s00289-009-0151-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0151-y

Keywords

Navigation