Skip to main content
Log in

Physical and Gas Transport Properties of Novel Hyperbranched Polyimide – Silica Hybrid Membranes

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

Physical and gas transport properties of novel hyperbranched polyimide – silica hybrid membranes were investigated. Hyperbranched polyamic acid as a precursor was prepared by polycondensation of a triamine monomer, 1,3,5-tris(4-aminophenoxy)benzene (TAPOB), and a dianhydride monomer, 4,4’-(hexafluoro-isopropylidene)diphthalic anhydride (6FDA), and subsequently modified the end groups by 3-aminopropyltrimethoxysilane (APTrMOS). The hyperbranched polyimide – silica hybrid membranes were prepared using the polyamic acid, water, and tetramethoxysilane (TMOS) via a sol-gel technique. 5 % weight-loss temperature and glass transition temperature of the hyperbranched polyimide – silica hybrid membranes determined by TG-DTA measurement considerably increased with increasing silica content, indicating effective cross-linking at polymer – silica interface mediated by APTrMOS moiety. CO2, O2, and N2 permeability coefficients of the hybrid membranes increased with increasing silica content. It was pointed out that the increased gas permeabilities are mainly attributed to increase in the gas solubilities. On the contrary, CH4 permeability of the hybrid membranes decreased with increasing silica content because of decrease in the CH4 diffusivity and, as a result, CO2/CH4 selectivity of the hybrid membranes remarkably increased. It was concluded that the 6FDA-TAPOB hyperbranched polyimide – silica hybrid membranes have high thermal stability and excellent gas selectivity, and are expected to apply to a high-performance gas separation membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sykes GF, Clair AKS (1986) J Appl Polym Sci 32:3725

    Google Scholar 

  2. Okamoto K, Tanaka K, Kita H, Ishida M, Kakimoto M, Imai Y (1992) Polym J 24:451

  3. Langsman M, Burgoyne WF (1993) J Polym Sci A Polym Chem 31:909

    Google Scholar 

  4. Li Y, Wang X, Ding M, Xu J (1996) J Appl Polym Sci 61:741

    Google Scholar 

  5. Hirayama Y, Yoshinaga T, Kusuki Y, Ninomiya K, Sakakibara T, Tamari T (1996) J Membr Sci 111:169

    Google Scholar 

  6. Shimazu A, Miyazaki T, Maeda M, Ikeda K (2000) J Polym Sci B Polym Phys 38: 2525

    Google Scholar 

  7. Niwa M, Kawakami H, Kanamori T, Sinbo T, Kaito A, Nagaoka S (2001) Macromolecules 34:9039

    Google Scholar 

  8. Fang J, Kita H, Okamoto K (2000) Macromolecules 33:4639

    Google Scholar 

  9. Fang J, Kita H, Okamoto K (2001) J Membr Sci 182:245

    Google Scholar 

  10. Chen H, Yin J (2002) J Polym Sci A Polym Chem 40:3804

    Google Scholar 

  11. Suzuki T, Yamada Y (2004) Polymer in press

  12. Joly C, Goizet S, Schrotter JC, Sanchez J, Escoubes M (1997) J Membr Sci 130:63

    Google Scholar 

  13. Cornelius CJ, Marand E (2002) J Membr Sci 202:97

    Google Scholar 

  14. Hibshman C, Cornelius CJ, Marand E (2003) J Membr Sci 211:25

    Google Scholar 

  15. Iwata M, Adachi T, Tomidokoro M, Ohta M, Kobayashi T (2002) J Appl Polym Sci 88:1752

    Google Scholar 

  16. Hibshman C, Mager M, Marand E (2004) J Membr Sci 229:73

    Google Scholar 

  17. Takeichi T, Stille JK (1986) Macromolecules 19:2093

  18. Muruganandam N, Koros WJ, Paul DR (1987) J Polym Sci B Polym Phys 25:1999

    Google Scholar 

  19. Morisato A, Shen HC, Sankar SS, Freeman BD, Pinnau I, Casillas CG (1996) J Polym Sci B Polym Phys 34:2209

    Google Scholar 

  20. Pinnau I, Casillas CG, Morisato A, Freeman BD (1996) J Polym Sci B Polym Phys 34:2613

    Google Scholar 

  21. Dixon-Garrett SV, Nagai K, Freeman BD (2000) J Polym Sci B Polym Phys 38:1078

    Google Scholar 

  22. Weinkauf DH, Kim HD, Paul DR (1992) Macromolecules 25:788

    Google Scholar 

  23. Wu KH, Chang TC, Wang YT, Chiu YS (1999) J Polym Sci A Polym Chem 37:2275

    Google Scholar 

  24. Park HB, Kim JK, Nam SY, Lee YM (2003) J Membr Sci 220:59

    Google Scholar 

  25. Koros WJ, Fleming GK (1993) J Membr Sci 83:1

    Google Scholar 

  26. Freeman BD (1999) Macromolecules 32:375

    Google Scholar 

  27. Robeson LM (1991) J Membr Sci 62:165

    Google Scholar 

  28. Vu DQ, Koros WJ, Miller SJ (2003) J Membr Sci 211:311

    Google Scholar 

  29. Vu DQ, Koros WJ, Miller SJ (2003) J Membr Sci 211:335

    Google Scholar 

  30. He Z, Pinnau I, Morisato A (2004) Novel nanostructured polymer – inorganic hybrid membranes for vapor – gas separation. In: Pinnau I, Freeman BD (eds) Advanced materials for membrane separation. American Chemical Society, Washington, DC (ACS Symposium Series; 876, pp 218-233)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuharu Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Yamada, Y. Physical and Gas Transport Properties of Novel Hyperbranched Polyimide – Silica Hybrid Membranes. Polym. Bull. 53, 139–146 (2005). https://doi.org/10.1007/s00289-004-0322-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-004-0322-9

Keywords

Navigation