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Abstract: In this paper mesoscopic (individual based) and macroscopic (pop-
ulation based) models for mesenchymal motion of cells in fibre networks are
developed. Mesenchymal motion is a form of cellular movement that occurs
in three-dimensions through tissues formed from fibre networks, for example
the invasion of tumor metastases through collagen networks. The movement of
cells is guided by the directionality of the network and in addition, the network
is degraded by proteases.

The main results of this paper are derivations of mesoscopic and macroscopic
models for mesenchymal motion in a timely varying network tissue. The meso-
scopic model is based on a transport equation for correlated random walk and
the macroscopic model has the form of a drift-diffusion equation where the
mean drift velocity is given by the mean orientation of the tissue and the
diffusion tensor is given by the variance-covariance matrix of the tissue orien-
tations. The transport equation as well as the drift-diffusion limit are coupled
to a differential equation that describes the tissue changes explicitly, where we
distinguish the cases of directed and undirected tissues. As a result the drift
velocity and the diffusion tensor are timely varying. We discuss relations to
existing models and possible applications.

1 Introduction

In a review article on cell movement, Friedl and Bröcker [10] report that the movement of
amoeboid cells on a surface differs significantly from their movement in a tissue matrix.
On flat surfaces (like a petri dish) cells are free to move in any direction, and they can
form multiple adhesions with the substrate. In many cases cells appear round-shaped with
broad protrusions in the direction of movement. In three dimensional tissues, however,
cells experience movement constraints given from the surrounding tissue. Some tumor
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cells, for example, appear elongated and spindle shaped. They send out thin pseudopods
for directional guidance from the surrounding matrix. Moreover, the cells use proteases to
alter the tissue and to cut through obstacles. This form of motion is termed mesenchymal
motion [10, 11].

In this paper we derive and analyse transport models for mesenchymal motion and we
study the corresponding drift-diffusion limits. Transport models are also seen as meso-
scopic models which simplify the microscopic details, but still allow for an individual-
based model. Scaling arguments are used to derive corresponding macroscopic models
which describe a population of cells as a whole. These models typically take the form
of drift-diffusion equations. Macroscopic models are very useful to describe the dynamic
behavior of moving cells in tissues and they can be easily extended to include interactions
with the immune system, the invasion of harmful metastases, or guided movement due to
chemotaxis.

The main result of this paper are the derivation of kinetic models for mesenchymal cell
movement in network tissues, their drift-diffusion scaling limits, and a discussion of the
corresponding one-dimensional versions. The whole analysis is divided into undirected and
directed tissue (explained below). The transport models are given in (12) for undirected
tissue and in (17) for directed tissue. The corresponding one-dimensional versions are
given in (27) for undirected tissue and in (20) for directed tissue. The macroscopic drift-
diffusion limits are given in (60)-(64) for undirected tissue and in (67)-(70) for directed
tissue.

In undirected tissues the fibres are symmetrical along their axis and both fibre directions
are identical (see Figure 1a)). Collagen fibres are undirected and they form the basis for
many human (and animal) tissues. It is of utmost importance to understand the movement
behavior of cells in tissues and to attempt to model the cell-tissue interactions. The tissue
morphology can be of very different nature: from the elongated and parallel-oriented fibres
of type I collagen, to the network-like fibres of type IV collagen. An overview of relevant
tissue matrices can be found in Yurchenko et al. [25].

For directed tissues (Figure 1 b)) the fibres are unsymmetrical and the two ends can be
distinguished (positive/negative, forward/backward, north/south). Directed components
do not play a major role for cell movement in tissues, however, directed fibres occur in-
side cells (such as tubulin or actin) or as combination of cells (such as the fibre tracks in
the white matter of the brain). Branching collagen fibre networks can also be considered
directional if the branching points are of significance for the movement of cells. As men-
tioned already, the undirected case is more important for the application in mind. From
the mathematical point of view, the directed case is also of interest and in this paper we
treat both cases. It is beneficial to have a general theory, since in the future directed fibres
might be identified in the extracellular matrix (ECM) that play an important role for cell
movement.

According to Friedl and Bröcker [10], the movement of mesenchymal cells in tissues
can be split into three processes (i) attachment of the leading edge, (ii) cell contraction
and (iii) detachment of the cell rear [10]. The attachment is typically integrin-mediated
and some cells form focal adhesion points with the tissue fibres. The focal adhesion
points connect the integrin binding site to the cytoskeleton of the cell. The integrin-
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Figure 1: A sketch of an undirected tissue in a) and a directed tissue in b)

mediated binding leads to the spindle-like morphology of the cells. In experiments with
HT-1080 fibrosarcoma cells and with MDA-MB-231 mammarian carcinoma cells it has
been observed by Wolf et al. [24] that ECM - degrading proteases are expressed to degrade
the collagen tissue and to form tube-like matrix defects. When the ECM-degrading enzyme
is inhibited and the integrins are blocked, then the cells are no longer spindle shaped and
they will no longer form tunnel-shaped tracks. However, they are still able to translocate
and in some cases they have been found to form constriction rings to squeeze through
obstacles [24]. This effect has been called mesenchymal-amoeboid transition [11].

The models derived here are based on directional information about the underlying
tissue network. This complements recent development in MRI spectroscopy, where tissue
directionality and tissue fibres can be visualized. The method is called Diffusion Ten-
sor Imaging (DTI) [3] and MRI spectroscopy is used to measure the diffusion of water
molecules in the tissue for several directions. The method has been used by Mori et al.
[17] to identify white matter fibre tracks in the rat brain. So far the resolution of DTI
scanning is about 2mm for 6 possible directions [3], it can be expected that further de-
velopment of this technique will improve the resolution. If DTI measurements become
available I plan to use the models of this paper to study cell movement in these tissue.
This could be of importance to glioma invasion within the brain.

Models for orientational movement were also studied by Alt [1], Dickinson [7], Othmer,
Dunbar, Alt [18], Hillen and Othmer [14], [19], or more recent publications by Chalub et al.
[4] and Hwang et al. [15]. For time-stationary tissues the model presented here falls into
the general class of transport equations for contact guidance, that have been introduced
and studied by Dickinson [7]. However, as Dickinson uses projection operators, I use
hydrodynamic scaling and the Chapman-Enskog expansion. The drift-diffusion limit of
those two methods is the same (see the discussion section 6 for a more detailed comparison).
Dickinson extends his theory in [7] to time-varying tissue where the variations in tissue
occur on a slower timescale than particle movement. With the method proposed here the
time scales of movement and tissue changes do not need to be separated and a dynamic
drift-diffusion limit is derived, where the parameters (diffusion tensor, and drift velocity)
dynamically depend on the changing environment.

Barocas and Tranquillo [2] developed the anisotropic biphasic theory (ABT) for contact
guidance. The ABT is based on balance equations between the tissue-cell phase and the
interstitial fluid phase, where cell alignment and fibre alignment are included. We give a
more detailed comparison in the discussion section 6.

Dallon, Sherratt, and Maini [5], [6] derived and studied a mathematical model for colla-
gen fibre deposition by moving fibroblasts and application to wound healing. Their model
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uses integration kernels that describe the interaction between cell fibres. These terms lead
to orientational diffusion terms in the corresponding mathematical model. Orientational
diffusion is neglected here, since we assume strong contact guidance by the fibre network
(as dominating effect).

The paper is organized as follows:
In section 2 a transport model for movement in a timely varying tissue matrix is introduced
and a dynamic equation for the tissue changes is derived. We distinguish between directed
and undirected tissue and derive for each case a coupled system of a transport equation
for the cells and a differential equation for the directional distribution of the fibre network.
The mesoscopic models for mesenchymal motion are given in (12) for undirected tissue
and in (17) for directed tissue.

In section 3 the analysis of the one-dimensional versions is given. Here the important
steps are easily done explicitly and some basic insight can be gained already. Three scaling
arguments are introduced and it is shown how they are related. These are (i) the moment
closure, (ii) the parabolic scaling, and (iii) the hydrodynamic scaling.

In section 4 the n-dimensional transport model for mesenchymal motion in a given
tissue matrix is studied. Again (i) the moment closure method, (ii) the parabolic scaling
and (iii) the hydrodynamic scaling are investigated. The hydrodynamic scaling gives the
fullest picture as it shows how drift dominates and diffusion appears as a correction term.
The methods used in section 4 closely follow the exposition of Dolak and Schmeiser [9]
for chemotaxis models. The methods carry over, although the model studied here is not
a special case of the model of Dolak and Schmeiser, so the results of [9] cannot be used
here.

In section 5 the hydrodynamic scaling is carried out for the full models of mesenchymal
motion in a tissue which is cut by protease released by the cells. Here the macroscopic
limit models are derived, equations (60)-(64) for the undirected case and equations (67)-
(70) for the directed case. The general derivations are applied to the one dimensional
cases and the results are compared to those from section 3.

In a section 6 the conclusions are summarized and compared to existing theories from
the literature. Moreover, future venues for analysis, numerical simulation, extensions, and
applications are discussed.

2 Transport Model for Mesenchymal Motion

To model the movement of a cell in a given fibre network we assume that the matrix
or tissue gives a selection of preferred directions along which a cell can move. Let Sn−1

denote the unit sphere in IRn and let θ ∈ Sn−1 denote the fibre orientation. Then we
denote the distribution of fibre orientations at time t ≥ 0 and at location x ∈ Ω by the
probability density q(t, x, θ). The n-dimensional spatial domain Ω is not specified further.
Of course we assume for all t, x that

∫

Sn−1

q(t, x, θ)dθ = 1.
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We define the first two directional moments of q and introduce the vector of the mean
fibre direction as

Eq(t, x) :=
∫

Sn−1

θq(t, x, θ)dθ (1)

and the variance-covariance matrix of q as

Vq(t, x) :=
∫

Sn−1

(θ − Eq)(θ − Eq)T q(t, x, θ)dθ. (2)

For undirected fibres we add the requirement of symmetry, such that

q(t, x, θ) = q(t, x,−θ) for undirected tissues.

This has the immediate consequence that

Eq(t, x) = 0 and Vq(t, x) =
∫

Sn−1

θθT q(t, x, θ)dθ for undirected tissues. (3)

2.1 Cell Movement

Since the fibre network gives directional information about possible movement directions
of the cells, a transport equation approach seems natural. In this approach we assume
that cell-cell interactions play a negligible role. The primary interaction studied here are
cell-fibre interaction. To properly include cell-cell interactions a stochastic many particle
system needs to be studied; this has been done for chemotaxis in [21].

Let V denote the set of all possible velocities of moving cells and p(t, x, v) the popu-
lation density of cells that have velocity vector v at time t at location x. For our purpose
p(t, x, v) can also be interpreted as probability density to find a moving cell at time t at
location x with velocity v. We assume that V is radially symmetric and can be written as

V = [s1, s2]× Sn−1, 0 ≤ s1 ≤ s2 < ∞,

where [s1, s2] is the range of possible speeds. For now we assume that there is a constant
turning rate µ. We assume that if cells decide to change direction, they will choose a new
direction θ ∈ Sn−1 with probability q(t, x, θ). Where we assume that if a direction θ is
chosen, then the speed s will be chosen randomly such that sθ ∈ V . We introduce a
notation for the unit vector in direction of v

v̂ :=
v

‖v‖ ,

and we define a weight parameter:

ω :=
∫

V
q(t, x, v̂)dv =

{ sn
2−sn

1
n for s1 < s2,

sn−1 for s1 = s2 = s.
(4)

Then the transport model for mesenchymal motion in a timely varying directional field
reads

pt(t, x, v) + v · ∇p(t, x, v) = −µp(t, x, v) + µ

∫

V

q(t, x, v̂)
ω

p(t, x, v′)dv′.
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Note that since q is a probability distribution on Sn−1 the quotient q(t, x, v̂)/ω is a distri-
bution on V and ∫

V

q(t, x, v̂)
ω

dv = 1.

Hence our basic assumption can be formulated that q(t, x, v̂)/ω gives the distribution of
newly chosen velocities. In a short notation the above transport equation reads:

pt + v · ∇p = −µp + µ
q(t, x, v̂)

ω
p̄, p̄ =

∫

W
p(v)dv. (5)

In a next step we model the tissue changes explicitly.

2.2 Modeling Tissue Changes

To model tissue changes we are interested to derive an equation for q(t, x, θ) of the form

qt(t, x, θ) = G(θ, p, q). (6)

Since q describes a non negative probability distribution on the unit sphere Sn−1, we
stipulate the following minimal assumptions on the fibre dynamics G:

∫

Sn−1

G(θ, ., .)dθ = 0, G(., ., 0) = 0, (7)

with an additional symmetry assumption for undirected tissue

G(−θ, p, q) = G(θ, p, q).

In general the function G(θ, p, q) can describe fibre degradation, fibre generation (through
fibroblasts) or other fibre-cell interactions. Here we focus on proteolytic fibre degradation,
and we derive two possible choice of G for mesenchymal motion.

In general, equations (5) and (6) form a dynamical system for cell movement in a
fibre network including fibre network dynamics; and we can ask the question of local and
global existence of solutions. In case of chemotaxis, a system of a transport equation and
a parabolic equation for the chemical signal was studied recently by Chalub et al. [4]
and Hwang et al. [15]. Their proofs of global existence of solutions are based on L∞

estimates of the turning kernel. In the case studied here the turning kernel is given by the
distribution q. In examples, later, we like to be able to consider totally aligned tissues,
which for a tissue in direction of b ∈ IRn corresponds to q(θ) = δb(θ). Hence a solution
theory should include δ-distributions for q. Of course, these are not bounded in L∞. In
particular, assumption (A0) in [4] does not apply, and hence their results cannot be ap-
plied directly. At a first glance it seems that a detailed existence analysis of model (5)
and (6) is technically involved. In this paper we rather focus on the modeling itself and
we keep the existence questions in mind for future research.

To model the proteolytic interactions of the metastatic cells with the fibre network,
we first introduce the fibre density Q(t, x, θ) and we distinguish the two tissue types.
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We assume that, as cells move through the tissue by contact guidance, they primarily
cut directions that are orthogonal to the direction of movement. This assumption is
supported by the observation that the proteolytic activity in the cell front is enhanced
compared to the sides or the rear of the cell (see Wolf et al. [24]). Further we assume that
the cells leave fibres intact that are parallel to the movement direction.

2.2.1 Undirected Tissue

We compare the fibre direction θ ∈ Sn−1 with the movement direction v ∈ V of a cell.

1. If the tissue fibre θ is orthogonal to v̂ (|θ · v̂| ≈ 0), then the cell will cut this fibre
with a high probability. On the other hand, if θ is oriented parallel to v̂ (|θ · v̂| ≈ 1),
then it is most likely not cut. We define the mean projection of movement direction
on the fibre orientation:

Πu(t, x, θ) =
1

p̄(t, x)

∫

V
|θ · v̂|p(t, x, v)dv, (8)

which satisfies
0 ≤ Πu ≤ 1.

The case Πu(t, x, θ) = 0 corresponds to the case where all cells are moving perpen-
dicular to θ and we expect fibre degradation. The case of Πu(t, x, θ) = 1 corresponds
to total alignment in the directions ±θ.

2. Further we assume that the mass-action term p̄Q describes the frequency of an
encounter of a tissue fibre with a cell.

3. Moreover, we introduce a constant κ ≥ 0 that describes the efficiency of cutting or
the concentration of the protease per cell.

Based on these assumptions, our tissue modification model for the fibre density Q(t, x, θ)
has the form

Qt(t, x, θ) = κ(Πu(t, x, θ)− 1) p̄ Q. (9)

The above transport model (5) uses the directional distribution q(t, x, θ). This is given,
for Q 6= 0 by

q(t, x, θ) =
Q(t, x, θ)∫

Sn−1 Q(t, x, θ)dθ
.

Then from (9) we derive a differential equation for q:

qt(t, x, θ) = κ(Πu(t, x, θ)−Au(t, x)) p̄(t, x)q(t, x, θ), (10)

with
Au(t, x) =

∫

Sn−1

Πu(t, x, θ)q(t, x, θ)dθ. (11)

It can be easily verified that q(t, x, θ) is indeed a probability density for θ ∈ Sn−1, i.e. q ≥ 0
and

∫
qdθ = 1. An interpretation of equation (10) is shown in Figure 2. As Πu(t, x, θ)
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Figure 2: In a) three fibres and two moving cells are sketched. Figure b) shows the
projections Πu of the cell movement directions onto the three fibres. The coefficient Au

calculates the mean length of these projections, as shown in c). In d) The projection Πu

is compared to the mean length Au and if this value is negative the fibre will be degraded.

denotes the mean projection of cell movement directions v̂ onto a given orientation θ, the
term Au(t, x) denotes the mean value of these mean projections over all fibre directions.
Au(t, x) is a measure of the relative alignment of fibres and cells. The differential equation
(10) compares the projection of the fibre direction with its mean value. If Πu(t, x, θ) is
below mean value than direction θ is degraded, and if Πu is larger than Au then θ receives
a higher probability weight through q.

Putting the model for cell movement (5) together with the equation for the fibre net-
work (10) we propose the following transport model for mesenchymal motion in undirected
tissues

pt + v · ∇p = −µp + µ
q(t, x, v̂)

ω
p̄, (12)

qt = κ(Πu(t, x, θ)−Au(t, x)) p̄(t, x)q(t, x, θ),

where Πu is given by (8) and Au is given by (11).

2.2.2 Directed Tissue

Our assumptions for the tissue changes are very similar to the undirected case.

1. Again, the product θ · v̂ gives information about the relative orientation of θ and
v̂. However, now we assume that most cutting occurs if the cell happens to move
opposite to the fibre direction. There are two reasons for this assumption. First,
moving against the grain of a fibre might be very costly, or even impossible without
destroying the fibre. Secondly, if a cell is elongated along a fibre θ, then it will
touch it in many locations. If the cell direction is opposite to θ, then protease can be
produced at all those contact sites. Similar to above we define a projection operator:

Πd(t, x, θ) =
1

p̄(t, x)

∫

V
θ · v̂ p(t, x, v)dv, (13)
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which can be written as well as

Πd(t, x, θ) = θ · ¯̂v, with ¯̂v =
1
p̄

∫

V
v̂pdv,

and it satisfies
−1 ≤ Πd ≤ 1.

2. As before we assume mass action kinetics p̄Q, and

3. the constant κ ≥ 0 describes the protease efficiency.

Then the equation for the fibre density reads

Qt(t, x, θ) = κ(Πd(t, x, θ)− 1) p̄ Q. (14)

For the fibre distribution q(t, x, θ) we obtain:

qt(t, x, θ) = κ(Πd(t, x, θ)−Ad(t, x)) p̄(t, x)q(t, x, θ), (15)

with
Ad(t, x) =

∫

Sn−1

Πd(t, x, θ)q(t, x, θ)dθ. (16)

Together with the model for cell movement (5) we obtain a transport model for mesenchy-
mal motion in directed tissues

pt + v · ∇p = −µp + µ
q(t, x, v̂)

ω
p̄, (17)

qt = κ(Πd(t, x, θ)−Ad(t, x)) p̄(t, x)q(t, x, θ),

where Πd is given by (13) and Ad is given by (16).
In the next section we begin the analysis with a one-dimensional formulation of these

models (12, 17). Although the fibre network are intrinsically three dimensional it is very
helpful to look at the one dimensional versions. It will elucidate the set up of these models
and it prepares the stage for the analysis of the general models in the following sections.

3 1-D Models for Mesenchymal Motion

Also in the one dimensional case we need to distinguish between directed and undirected
tissues. Here we will treat the directed case first, since it is more general and the undirected
case follows easily. We fix speed to |v| = s and consider a 1-dimensional domain. Then
cells can only move to the right or left

p+(t, x) = p(t, x, +s), p−(t, x) = p(t, x,−s),

respectively. The distribution q(t, x, θ) describes a bias of choosing right over left and vice
versa. Here we use the notation

q+(t, x) = q(t, x, +1), q−(t, x) = q(t, x,−1), q+(t, x) + q−(t, x) = 1.
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The two moments of q are given by

Eq = q+ − q−, and Vq = 1− (q+ − q−)2. (18)

The one-dimensional transport equation (5) reads

p+
t + sp+

x = −µp+ + µq+(p+ + p−),
p−t − sp−x = −µp− + µq−(p+ + p−).

(19)

3.1 Directed Tissue

To find the equations for q± we look at the projection operator Πd (13) and obtain

Πd(t, x, θ) =
1

p+ + p−
(θ(+1)p+ + θ(−1)p−),

which leads to the definitions of

Π+
d := Πd(t, x,+1) =

p+ − p−

p+ + p−
, Π−d := Πd(t, x,−1) =

p− − p+

p+ + p−
.

We calculate the mean projection Ad as

Ad(t, x) = Π+
d q+ + Π−d q− =

p+ − p−

p+ + p−
(q+ − q−).

Then the equation for q+ reads

q+
t = κ(Π+

d −Ad)p̄q+

= κ

(
p+ − p−

p+ + p−
− p+ − p−

p+ + p−
(q+ − q−)

)
(p+ + p−)q+

= κ(p+ − p−)(q− − q+ + 1)q+,

and a similar equation for q−:

q−t = κ(p+ − p−)(q− − q+ − 1)q−.

Together we have the following model for one-dimensional mesenchymal motion in directed
tissue:

p+
t + sp+

x = −µp+ + µq+(p+ + p−),
p−t − sp−x = −µp− + µq−(p+ + p−), (20)

q+
t = κ(p+ − p−)(q− − q+ + 1)q+,

q−t = κ(p+ − p−)(q− − q+ − 1)q−.

It is easy to check that q+ +q− = 1 is an invariant to the second last equations. Moreover,
q− − q+ + 1 > 0 and q− − q+ − 1 < 0. Hence for p+ > p− the term (p+ − p−) is negative
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and q+ will increase while q− decreases. Hence directionality is enhanced by system (20).

We now add and subtract the first two equations of (20) to obtain equations for the
total population p̄ = p+ + p− and the population flux j = s(p+ − p−).

p̄t + jx = 0,

jt + s2p̄x = −µj + µ(q+ − q−)sp̄.
(21)

Similarly, we can transform equations three and four of (20) by building the sum and the
difference. For the sum we get (q+ + q−)t = 0, since the sum is constant 1. The difference
is Eq and satisfies

Eqt =
κ

s
j(1− E2

q) =
κ

s
jVq. (22)

Now we study three scalings which become relevant later for the n-dimensional model
as well:
(i) The Telegraph Equation: To derive a second-order equation we differentiate (21)
again

p̄tt + jxt = 0,

jxt + s2p̄xx = −µjx + sµ((q+ − q−)p̄)x.

As we substitute jxt from the second equation we find a damped wave equation with drift
term:

1
µ

p̄tt + p̄t +
(
sEqp̄

)
x

=
s2

µ
p̄xx, (23)

where the drift velocity is given by the expectation of q (18). This in fact is characteristic
to what follows for the n-dimensional case as well.
(ii) The Parabolic Scaling: To derive a diffusion model we study the parabolic scaling
of space and time. Let ξ = εx denote a macroscopic space scale and τ = ε2t denote a long
time scale. As we rescale the telegraph equation (23) we obtain

ε4

µ
p̄ττ + ε2p̄τ + ε

(
sEqp̄

)
ξ

= ε2 s2

µ
p̄ξξ, (24)

which means the dominating term is the drift term. To obtain terms of equal order of
magnitude we assume that the expectation Eq is small:

Eq(τ, ξ) = lim
ε→0

1
ε

(
q+

(
τ

ε2
,
ξ

ε

)
− q−

(
τ

ε2
,
ξ

ε

) )
< ∞. (25)

With this assumption we obtain from (24) to leading order a drift-diffusion model with
diffusion constant s2

µ and drift velocity sEq:

p̄τ +
(
sEq(τ, ξ)p̄

)
ξ

=
s2

µ
p̄ξξ . (26)
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(iii) The Hydrodynamic Scaling: Here we assume that σ = εt, ξ = εx. Then from
(23) we find:

ε2

µ
p̄σσ + εp̄σ + ε

(
sEqp̄

)
ξ

=
ε2s2

µ
p̄ξξ

which, to leading order, gives a pure drift model

p̄σ +
(
sEqp̄

)
ξ

= 0,

with drift velocity sEq which is now of order 1 and not scaled by ε as in the previous case.
In this one-dimensional example we see already that the relative size of the drift velocity

sEq sets the stage for the appropriate macroscopic model. If sEq is of order O(1) relative
to ε then the hydrodynamic scaling gives the leading order approximation. If sEq is of
order O(ε) then the parabolic scaling applies.

For the n-dimensional model we will carry the analysis a bit further and we will show
that, in the hydrodynamic scaling, the diffusion term appears as a first-order correction to
the leading order drift term. The study of the one-dimensional example will be continued
in section 5.3.

3.2 Undirected Tissue

For undirected tissue we get a projection term of

Π±u =
1

p+ + p−
(|θ|p+ + |θ|p−) = 1,

and a mean projection of Au = 1. Hence

q±t = 0.

Then the one dimensional model for mesenchymal motion in an undirected tissue reads

p+
t + sp+

x = −µp+ + µq+(p+ + p−),
p−t − sp−x = −µp− + µq−(p+ + p−), (27)

q+
t = 0,

q−t = 0.

Since cells can only move parallel to the fibres there is no cutting at all. The transformation
to a telegraph equation and the three scaling limits are identical to the case of directed
tissue.

4 Mesenchymal Motion in n-Dimensions

In this section we study the three above mentioned scalings (i) moment closure (telegraph
equation), (ii) parabolic scaling, and (iii) hyperbolic scaling for models (12) and (17).
All these methods are well known and have been used in various contexts. For moment
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closure see for example Levermore [16] or Hillen [13], for parabolic scaling see Othmer and
Hillen [14, 19] or Chalub et al. [4] and Hwang et al. [15] for recent result; and a good
exposition of the hydrodynamic scaling can be found in Dolak and Schmeiser [9]. We have
several good reasons to consider all three methods applied to the transport equations for
mesenchymal motion. First of all, these methods have not yet been applied to mesenchymal
motion. In particular for the closure or scaling limit of the fibre equation (q-equation),
details of these methods are needed. Secondly, we find an interesting relation between the
macroscopic parameters of drift velocity and diffusion tensor to statistical properties of
the fibre matrix, i.e. the mean fibre orientation and the variance-covariance matrix. The
importance of these terms can only be understood if the details of the approximations
are given. Thirdly, typically these methods appear in different papers written by different
authors. Here I like to compare the results and explain differences and similarities. A
detailed comparison helps to judge which method to choose in a given situation. For
example, a parabolic scaling in a drift dominated situation does not make sense.

As far as the analysis of the transport part of these models is concerned, we do not
need to seperate the undirected and directed cases. However, as soon as we consider the
q-equation we distinguish the two tissue classes.

4.1 Transport Equations

In this section we study the transport equation for cell movement (5) where we assume
for now that the tissue distribution q(t, x, θ) is given. During the calculations various new
constants and variables will be used, primarily to keep the exposition as transparent as
possible. We will define all necessary parameters right here, although their motivation
might become clear only at a later stage. Given the directional distribution q(t, x, θ) we
defined already the expectation Eq in (1), the variance Vq in (2), and the parameter ω in
(4). Further we define an effective drift velocity

u :=
1
ω

∫

V
vq(t, x, v̂)dv, (28)

and an effective diffusion tensor

D :=
1
ω

∫

V
(v − u)(v − u)T q(t, x, v̂)dv. (29)

These new quantities can be expressed in terms of the expectation and variance of q as
follows:

u = βEq, with β =

{
sn+1
2 −sn+1

1
ω(n+1) , for V = [s1, s2]× Sn−1

sn for V = sSn−1.
(30)

The diffusion tensor D can be simplified for the case of V = sSn−1 to

D = s2Vq. (31)
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As mentioned earlier, in case of an undirected tissue we have always u = βEq = 0. Then
the diffusion tensor D can also be related directly to the Variance of q, by:

D = αVq, with α =

{
sn+2
2 −sn+2

1
ω(n+2) , for V = [s1, s2]× Sn−1

sn+1 for V = sSn−1.
(32)

4.1.1 Moment Closure

In the derivation of the telegraph equation (23) for the 1-dimensional model we derived
the corresponding moment system for p̄ and j in (21). In that case the moment system
was closed after the first moment. In n-dimensions, however, the moment system is never
closed. We define the velocity moments of p(t, x, v) as

p̄(t, x) =
∫

V
p(t, x, v)dv, m1(t, x) =

∫

V
vp(t, x, v)dv,

m2(t, x) =
∫

V
vvT p(t, x, v)dv.

Note that p̄ is a scalar, m1 a vector and m2 a 2-tensor and using the earlier definitions we
have m1 = v̄p̄.

As we integrate equation (5) over V and use the fact that
∫
V q(t, x, v̂)dv = ω we find

the conservation law
p̄t +∇m1 = 0. (33)

Now we multiply (5) by v and integrate to obtain

m1
t +∇ ·m2 = −µm1 + µp̄

∫

V
v
q(t, x, v̂)

ω
dv

= −µm1 + µp̄βEq, (34)

where we used (30).
In Hillen [12] an L2-minimization method has been introduced to close a corresponding

moment system. The moment closure can be carried out for general cases (see Hillen [13])
but here we restrict ourselves to the case that the cells have a constant speed but can move
in any direction, V = sSn−1. Then the second moment m2(t, x) can be approximated as
m2 ≈ s2

n p̄ (see [12]).
Using this moment closure we obtain from (33) and (34):

p̄t +∇m1 = 0,

m1
t +

s2

n
∇p̄ = −µm1 + µp̄ βEq.

(35)

In the same spirit as in (23) we can derive a telegraph equation:

1
µ

p̄tt + p̄t +∇(
p̄ βEq

)
=

s2

nµ
∆p̄. (36)

Again, the expectation of q gives a net drift u = βEq.
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4.1.2 The Parabolic Scaling

We study the same parabolic time and space scaling as for the 1-dimensional case above:

τ = ε2t, ξ = εx

for a small parameter ε > 0. Scaling of the transport equation (5) leads to

ε2pτ + εv · ∇ξp = −µp +
µ

ω
q(τ, ξ, v̂)p̄. (37)

We abbreviate the right-hand side of (37) and define for each (τ, ξ) a linear operator

Lϕ := −µϕ(v) +
µ

ω
q(τ, ξ, v̂)ϕ̄

for ϕ ∈ L2
q(V ), where L2

q(V ) denotes a weighted L2-space with weight function q−1(τ, ξ, v̂).
Hence the weight, and also the space L2

q(V ) depends on the chosen space-time point (τ, ξ).
For each (τ, ξ) we identify the kernel of L :

Lϕ = 0 ⇐⇒ −µϕ(v) +
µ

ω
q(τ, ξ, v̂)ϕ̄ = 0.

Thus
ϕ(v) =

q(τ, ξ, v̂)
ω

ϕ̄.

The operator L is a compact Hilbert-Schmidt operator (see [14]) and for each (τ, ξ) we
split L2

q(V ) according to

L2
q(V ) = 〈q(τ, ξ, v̂) 〉+ 〈q(τ, ξ, v̂) 〉⊥,

where 〈q〉 denotes the subspace of L2
q(V ) that is spanned by q. Then on 〈q〉⊥ we can invert

L (see also [14]):

F :=
(
L|〈q〉⊥

)−1
.

To calculate the pseudo-inverse F we consider ϕ(v) ∈ 〈q〉⊥ and solve

Lψ = ϕ.

Since ϕ(v) ∈ 〈q〉⊥ we have
∫
V ϕ(v)q(τ, ξ, v̂) dv

q(τ,ξ,v̂) =
∫
V ϕ(v)dv = 0.

Now
Lψ = ϕ ⇐⇒ −µψ(v) +

µ

ω
q(τ, ξ, v̂)ψ̄ = ϕ(v),

which gives

ψ(v) = − 1
µ

ϕ(v)− ψ̄
q(τ, ξ, v̂)

ω
.

For ψ(v) ∈ 〈q〉⊥ we have also ψ̄ = 0, hence

ψ(v) = − 1
µ

ϕ(v).

We summarize the above calculations in a Lemma:
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Lemma 4.1. For each (τ, ξ) we have F =
(L|〈q〉⊥

)−1 = − 1
µ as a multiplication operator.

Now we come back to the scaled equation (37) and consider an expansion in ε

p(τ, ξ, v) = p0(τ, ξ, v) + εp1(τ, ξ, v) + ε2p2(τ, ξ, v) + h.o.t.

where we assume that all mass is contained in the leading order term,
∫

V
pi(τ, ξ, v)dv = 0, for i ≥ 1.

As we compare orders of ε we find to leading order

ε0 : 0 = Lp0. Which implies p0(τ, ξ, v) = p̄(τ, ξ) q(τ,ξ,v̂)
ω .

The order ε-terms yield:

ε1 :
(∇ · v)p0 = Lp1. (38)

To solve this equation in 〈q〉⊥ the left-hand side has to satisfy a solvability condition:

0 =
∫

V
(∇ · v)p0q(τ, ξ, v̂)

dv

q(τ, ξ, v̂)
= ∇ ·

∫

V

vq(τ, ξ, v̂)
ω

dv p̄(τ, ξ) (39)

which is satisfied if we assume

Eq =
1

βω

∫

V
vq(τ, ξ, v̂)dv = 0. (40)

Then p1(τ, ξ, v) = − 1
µω (v · ∇)

(
p̄(τ, ξ)q(τ, ξ, v̂)

)
.

The second order terms are
ε2 :

p0τ + (v · ∇)p1 = Lp2.

The solvability condition reads
∫

p0τ +
∫

v · ∇p1 = 0, which gives

0 =
1
ω

∫

V
p̄τ (τ, ξ)q(τ, ξ, v̂)dv +∇ ·

∫

V
v

(
− 1

µω
(v · ∇)(p̄ q)

)
dv

= p̄τ − 1
µω
∇ ·

∫

V
v[(v · ∇p̄)q + (v · ∇q)p̄]dv

= p̄τ − 1
µω

∇ ·
∫

V
vvT q(τ, ξ, v̂)dv · ∇p̄− 1

µω
∇ ·

(∫

V
v(v · ∇q) dvp̄

)
.

Which gives the resulting parabolic limit equation:

p̄τ =
1
µ
∇ · (D(τ, ξ)∇p̄ + p̄∇D(τ, ξ)) , (41)

with diffusion tensor given by (29).
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Since for Eq = 0 the diffusion tensor can be written as αVq (see (32)), the limit equation
(41) can also be written as

p̄τ =
α

µ
∇∇(Vq(τ, ξ)p̄), (42)

where ∇∇ is not the Laplace operator ∆, since ∇∇ acts on a 2-tensor Vqp̄. The product
on the right-hand side is a scalar. Using tensor notation and summation over repeated
indices the equation (42) can be written as

p̄τ =
α

µ
∂i∂j

(
Vij

q (ξ)p̄
)
.

The diffusion term is given by the variance-covariance matrix of the underlying fibre
network and since in (40) we assumed Eq = 0 there is no drift term in (42).

In the case of chemotaxis transport equations the convergence of solutions for ε → 0 has
been rigorously shown in Chalub et al. [4] and Hwang et al. [15]. As mentioned earlier,
these theories do not apply here, since we need to include fibre networks distributions q
in the class of distributions.

4.1.3 The Hydrodynamic Scaling

In the previous section we assumed that the transport is diffusion dominated and directed
drift does not play an important role (Eq = 0 in (40)). The framework of hydrodynamic
scaling is applicable even if Eq = O(1) and it can be clearly seen that the assumption
Eq = O(ε) is necessary to obtain a pure diffusion limit. In this section we first derive a
drift approximation and in a second step a diffusion correction to the drift approximation.

As in Section 2.3 we study a hydrodynamic space and time scaling of

σ = εt, ξ = εx.

Then the transport equation (5) becomes

εpσ + ε(v · ∇)p = Lp. (43)

Again, we use the operator properties of L and split the solution into two parts:

p(σ, ξ, v) := p̄(σ, ξ)
q(σ, ξ, v̂)

ω
+ εp⊥(σ, ξ, v) (44)

with
∫

V
p⊥(σ, ξ, v)dv = 0.

This approximation technique is also known as the Chapman-Enskog expansion in physical
context. We closely follow the exposition as used by Dolak and Schmeiser [9] for chemo-
taxis. The results of [9] do not apply to our system directly, but the essential steps are
very similar.

We substitute (44) into (43) and obtain:

εp̄σ
q

ω
+ εp̄

qσ

ω
+ ε2p⊥σ + ε(v · ∇)(p̄

q

ω
) + ε2(v · ∇)p⊥ = L

(
p̄

q

ω
+ εp⊥

)

= εLp⊥. (45)
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As we integrate (45) over V and divide by ε we get

p̄σ +∇ ·
( 1

ω

∫

W
vq dv p̄ + ε

∫
vp⊥dv

)
= 0, (46)

where we used the fact that
∫

V
qσdv =

∂

∂σ

∫

V
qdv = 0, and

∫

V
p⊥σ dv =

∂

∂σ

∫

W
p⊥dv = 0.

Again, the mean value of q over V appears

p̄σ +∇ ·
(
β Eqp̄ + ε

∫

V
vp⊥dv

)
= 0. (47)

To leading order this is a drift-dominated model

p̄σ +∇ · (β Eqp̄) = 0. (48)

In the next step we need to find an expression for p⊥. To keep the following calculations
transparent we will use the effective drift u and the effective diffusion tensor D as defined
in (30) and (31). From (47) we can obtain p̄θ and substitute this into (45) (and divide by
ε):

Lp⊥ = − q

ω
∇ ·

(
up̄ + ε

∫

V
vp⊥dv

)
+ p̄

qσ

ω
+ εp⊥σ +

1
ω

(v · ∇)(p̄q) + ε(v · ∇)p⊥

=
1
ω

(v · ∇)(p̄q)− q

ω
∇ · (up̄) +

1
ω

p̄qσ + O(ε). (49)

To leading order we obtain, after rearrangement:

Lp⊥ ≈ q

ω
(v − u) · ∇p̄ +

1
ω

(v · ∇q − q∇ · u + qσ)p̄. (50)

We apply the pseudo inverse of L and find

p⊥ ≈ − 1
µω

(
q(v − u) · ∇p̄ + (v · ∇q − q∇ · u + qσ)p̄

)
. (51)

We substitute p⊥ into (47) and we switch to tensor notation where we use the summation
convention for repeated indices. This avoids confusion about multiple products of vectors
and their derivatives. As we use (51) in (47) we obtain

p̄σ + ∂j(uj p̄)

=
ε

µω
∂j

(∫

V
vj

[
q(vi − ui)∂ip̄ + (vi∂iq − q∂iui + qσ)p̄

]
dv

)

=
ε

µω
∂j

∫

V
vj(vi − ui)q dv ∂ip̄

+
ε

µω
∂j

([∫

V
vj(vi∂iq − q

1
ω

∫

V
v′i∂iq dv′)dv + ωujσ

]
p̄

)
.
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The two integrals inside the square brackets can be written as
∫

V
vj(vi∂iq − q

1
ω

∫

V
v′i∂iq dv′)dv

=
∫

V
vjvi∂iq dv − 1

ω

∫

V
vjq dv

∫

V
v′i∂iq dv′

=
∫

V
(vj − uj)vi∂iq dv

=
∫

V
(v − u) vT · ∇q dv,

where we returned to vector notation in the last step. Hence we obtain

p̄σ +∇ · (up̄) =
ε

µω
∇ ·

∫

V
v(v − u)T q dv · ∇p̄

+
ε

µω
∇ ·

((∫

V
(v − u)(vT · ∇q)dv + ωuσ

)
p̄

)
. (52)

We use the diffusion tensor (29) to write the term on the right-hand side in a more compact
form. Note that we always have

1
ω

∫

V
v(v − u)T q(σ, ξ, v̂)dv =

1
ω

∫

V
(v − u)(v − u)T q(σ, ξ, v̂)dv = D,

As we study ∇D(σ, ξ) we find:

∂iD(σ, ξ) =
1
ω

∫

V
vi∂i(vj − uj)q + vi(vj − uj)∂iq dv

= − 1
ω

∫

V
viq dv∂iuj +

1
ω

∫

V
vi(vj − uj)∂iq dv

= ui∂iuj +
1
ω

∫

V
vi(vj − uj)∂iq dv.

Then with (52) we arrive at the equation

p̄σ +∇ · (up̄) =
ε

µ
∇(∇(D(σ, ξ)p̄) + [u(∇ · u) + uσ]p̄

)
(53)

with a time-dependent drift term

u(σ, ξ) =
1
ω

∫

V
vq(σ, ξ, v̂) dv = βEq (54)

and a time-dependent diffusion tensor

D(σ, ξ) =
1
ω

∫

V
v(v − u(σ, ξ))T q(σ, ξ, v̂)dv. (55)

Note that if u ≈ 0 we obtain the same diffusion terms as from the parabolic scaling in
(41). Note also that D is positive definite and symmetric since it can be written as

D =
1
ω

∫

V
(v − u(σ, ξ))(v − u(σ, ξ))T q(σ, ξ, v̂)dv.
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4.2 Examples

Example 1: (Unidirectional tissue)
As an example we consider a strictly aligned tissue. We choose the coordinate axis e1 in
the direction of the tissue alignment and we assume

q(σ, ξ, θ) =





0.5 if θ = e1,
0.5 if θ = −e1,
0 otherwise.

Further we assume that the cells have a preferred speed s, hence V = sSn−1. In that case
we find

ω = sn−1, u = 0, D = s2e1e
T
1 .

Then the limit equation (53) becomes a one-dimensional diffusion equation in direction of
the tissue alignment:

p̄σ =
εs2

µ
p̄ξ1,ξ1 .

Example 2: (Spatially homogeneous)
If the tissue is timely constant and spatially homogeneous, i.e. q(σ, ξ, θ) = q(θ), then we
obtain

p̄σ +∇ · (up̄) =
ε

µ
∇ ·D∇p̄,

where u is a constant vector and D is a constant matrix.

Example 3: (Fixed speed)
The case of fixed cell speed V = sSn−1 is very interesting and it is worthwhile to summarize
the result for this case. We find

ω = sn−1, u(σ, ξ) = sEq, D(σ, ξ) = s2Vq.

The resulting macroscopic model now reads

p̄σ + s∇ · (Eqp̄) =
εs2

µ
∇

(
∇(Vq p̄) + Eq(∇ · Eq)p̄ +

1
s
Eq,σp̄

)
, (56)

where the statistical properties of the tissue enter the equations directly via the expecta-
tion Eq and the variance-covariance matrix Vq.

Example 4: (Relation to vector fields and ODE’s)
There is a natural relation of the mesenchymal motion models to ordinary differential
equations (ODEs). A solution of an ODE

ẋ = f(t, x) (57)

can be understood as an orbit x(t) that follows the vector field f(t, x) such that at each
point the vector f is tangential to the orbit. To connect this ODE to our model we assume
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that ‖f‖ = 1. In the language of our modeling, a given vector field f(t, x) corresponds to
a given, well defined orientational vector for each (σ, ξ), hence

q(σ, ξ, θ) = δf(σ,ξ)(θ).

Hence the vector field f becomes a directed fibre network q. The corresponding macro-
scopic quantities can be easily computed. The drift velocity is

u = βf(σ, ξ)

where the constant parameter β was given in (30). The diffusion matrix D for this case is
zero, which makes sense, since the variance of the fibre distribution is zero for a uniquely
defined orientation vector. Hence the macroscopic limit is purely drift dominated and
becomes

p̄σ +∇(βf(σ, ξ)p̄) = 0.

This is a hyperbolic differential equation and the characteristics are given by

ẋ = βf(t, x),

which corresponds to a scaled version of the ODE (57). Hence in a given vector field f
the cells move along orbits of the ODE. The same argument can be made, if we relax
the assumption that ‖f‖ = 1. In that case only the constant β would change. The
interpretation in the context of cells moving along the orbit of an ODE remains the same.
In this sense, the model for mesenchymal motion generalizes ODE’s to a situation that
the vector field is only given by a probability distribution function q.

5 Macroscopic Models with Protease Dynamics

Now we use the above observations to study the protease-tissue interaction models (10)
for undirected tissue and (15) for directed tissue.

5.1 Undirected Tissue

The equation for protease interaction with an undirected tissue is given by (10), with
projection operator (8) and mean projection length (11). The projection operator Πu uses
the integration over the particle distribution function p(σ, ξ, v). To obtain an equation
that only depends on p̄ and q we use the Chapman-Enskog expansion again p = p̄ q

ω + εp⊥.
Then to leading order we find

Πu(σ, ξ, θ) ≈
∫

V
|θ · v̂|q(σ, ξ, v̂)

ω
dv =

∫

Sn−1

|θ · θ′|q(σ, ξ, θ′)dθ′, (58)

and
Au(σ, ξ) =

∫

Sn−1

Πu(σ, ξ, θ)q(σ, ξ, θ)dθ. (59)
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Since, as mentioned earlier, for an undirected tissue we have u = βEq = 0, we arrive at
the following full macroscopic model for mesenchymal motion in undirected tissue

p̄σ =
1
µ
∇

[
∇(Dp̄)

]
, (60)

εqσ = κ(Πu −Au)p̄q, (61)
D(σ, ξ) = αVq(σ, ξ), (62)

Πu(σ, ξ, θ) =
∫

Sn−1

|θ · θ′|q(σ, ξ, θ′)dθ′, (63)

Au(σ, ξ) =
∫

Sn−1

Πu(σ, ξ, θ)q(σ, ξ, θ)dθ. (64)

System (60)-(64) forms a closed system for the total cell density p̄(σ, ξ) and the fibre
network q(σ, ξ, θ). In the undirected case, the drift diffusion approximation becomes a
pure diffusion model (60), where the anisotropic diffusion tensor D, given by (62), is
proportional to the variance-covariance matrix of the underlying fibre network. The fibre
degradation dynamics in equation (61) are now almost entirely described by the fibre
directional distribution q(σ, ξ, θ). The dependence on the cell population occurs only via
multiplication with p̄.

5.2 Directed Tissue

In case of a directed tissue the equation for protease interaction with the tissue is given
by (15), with projection operator (13) and mean projection length (16). As we use the
Chapman-Enskog expansion p = p̄ q

ω + εp⊥ for Πd we obtain to leading order

Πd(σ, ξ, θ) ≈ θ · Eq, (65)

and
Ad(σ, ξ) = E2

q . (66)

Together with the drift-diffusion model derived earlier (53) we arrive at the following
macroscopic model for mesenchymal motion in directed tissue

p̄σ +∇ · (up̄) =
ε

µ
∇(∇(D(σ, ξ)p̄) + [u(∇ · u) + uσ]p̄

)
, (67)

εqσ = κ(θ · Eq − E2
q)p̄q, (68)

u(σ, ξ) = βEq, (69)

D(σ, ξ) =
1
ω

∫

V
(v − u)(v − u)T q(σ, ξ, v̂)dv. (70)

In addition to a non-isotropic diffusion term D in (67) the expectation of q is an
important ingredient. We obtain a dominating drift term with drift velocity u and a drift-
diffusion correction term u(∇ · u) + uσ. This term is a directional derivative of u in the
mean movement direction. A term of this form is known from the Navier-Stokes equation
modeling fluid flow [20]. The projection and fibre degradation are now given through the
drift velocity term Eq. The cell population appears as a multiplicator in (68) only.

22



5.3 The 1-D Case Revisited

In section 3 we studied one-dimensional versions of the mesenchymal motion models for
directed and undirected fibre networks. If we apply the limit equations for undirected
tissue (60)-(64) to the one-dimensional case directly, we obtain

Πu = 1, Au = 1, q±σ = 0, D = αVq = s2,

and we obtain the one-dimensional diffusion model

p̄σ =
s2

µ
p̄ξξ. (71)

This model coincides with the drift diffusion model (26) for Eq = 0, which was derived by
direct methods in section 3.

For the directed case we find from (67)-(70)

p̄σ + s(Eqp̄)ξ =
εs2

µ

(
((1− E2

q)p̄)ξ + [EqEq,ξ +
1
s
Eq,σ]p̄

)
ξ
, (72)

εq±σ = κ(q+ − q−)p̄(q− − q+ ± 1)q±, (73)
Eq = q+ − q−. (74)

In this case the expectation of q also enters the diffusion term through 1− E2
q . In section

3 we derived a one-dimensional model for mesenchymal motion in a directed tissue as
system (20). If we compare the last two equations of (20) with equation (73) we see that
the difference p+− p− in (20) has been replaced by the term p̄(q+− q−) in (73). Hence in
(73) the difference in right or left moving cells is approximated by the difference in fibre
orientation multiplied by the total number of cells.

6 Discussion

In this paper we used kinetic transport equations to model mesenchymal motion of cells
in fibre networks. It turns out that a distinction between directed and undirected tissues
is important. The mesoscopic models (12) and (17) consist of a transport equation for
the cell movement coupled to a system of ordinary differential equations for the tissue
fibres. It is assumed that the tissue fibre distribution gives the most probable movement
direction of the cells. It is remarkable that the drift-diffusion limits (60)-(64) and (67)-(70)
are almost entirely based on two statistical quantities of the fibre network, the expectation
Eq as net drift and the variance-covariance matrix Vq as effctive diffusion matrix.

In this paper, two very specific cell-fibre inteactions have been modelled, using effective
projection operators Πu and Πd to describe proteolytic fibre degradation. I abstained
from the possibility to formulate a most general scaling result. For that the general
fibre network equation qt = G(θ, p, q) needs to be studied. Using the Chapman-Enskog
expansion p = p̄ q

ω + εp⊥ in G we are let to

G(θ, p, q) = G(θ, p̄
q

ω
, q) + εp⊥

∂G

∂p
+O(ε2),
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and the fibre network equation for the macroscopic limit reads

qt = G(θ, p̄
q

ω
, q).

A general function G can include fibre production through fibroblasts for example. A
connection to the wound healing model of Dallon and Sherratt [5] needs to be investigated
in more detail in future work.

The discussion of the one-dimensional versions is not significant for applications, since
movement in fibre networks is a three dimensional process. However, the corresponding
one-dimensional models (20) and (27) are very instructive and they provide some basic in-
sight into the mechanisms involved. For example, the existence of traveling pulse solutions
for the 1-dimensional case is studied in Wang et al. [23].

The macroscopic models derived in (60)-(64) and in (67)-(70) use non-isotropic dif-
fusion. Through recent developments in MRI spectroscopy the non-isotropic diffusion
tensors can be measured by the DTI method [3]. With DTI imaging we might be able
to parametrize directed tissue. Then, with our model, we could study the movement and
spread of cancerous cells in these directed tissues. It would be worthwhile for future re-
search to attempt to model cell movement in in the white matter tracks in the brain of
animals (see Mori’s work [17]).

Mathematically the drift-diffusion limits are very interesting and results for chemotaxis
applications can be found in Chalub et al. [4] and Hwang et al. [15]. These methods
do not apply here, since delta-distributions for the fibre network q need to be included in
an existence theory. We illustrated a natural relation to ODEs for the case that at each
location there is a given unique orientational vector. A detailed mathematical analysis of
these models is quite involved and goes beyond the scope of this paper. We are currently
working on stability analysis, numerical schemes, and appropriate and realistic boundary
conditions.

Dickinson [8] derived a macroscopic drift-diffusion model for contact guidance using
projection methods applied to a Fokker-Planck equation. The Fokker-Planck equation
describes the time evolution of the joint probability distribution of the cell location r and
the cell orientation θ. The cell orientation was assumed to change continuously in time
which was expressed through rotational drift and rotational diffusion terms. In Dickinson
[7] the model was generalized to include discrete orientational changes that are triggered
by a Poisson process (see also velocity jump process [18]). Our model from section 4 for
the case of a timely constant tissue is a special case of Dickinson’s model, although the
methods used are different. Here we will apply Dickinson’s results to the model (5) for the
case of timely constant tissue q(x, θ) and relate the relevant parameters explicitly. The
drift-diffusion limit in [7] has the form

pt(x, t) = −∇(V (x)p(x, t)) +∇T (M(x)∇p(x, t)) (75)

with random motility tensor

M(x) =
1

µω

∫

W
(v − u)vT q(x, v̂)dv = µD(x)
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and drift velocity

V (x) = u +
1

µω

∫

W
(v − u)vT∇q(x, v̂)dv.

Using some vector calculus it can be shown that equation (75) is identical to model (67)
for timely constant q(x, θ). Other relevant relations are as follows, where the left-hand
side of the equations refers to Dickinson’s notation and the right-hand side corresponding
to the notation used in this paper:

η−1 = ε, v̄(r) = u, L−1(1− P ) = −µ−1

∆ = −εµ−1(v − u), Γ = vω−1q(x, v̂), ps(σ0, r) = ω−1q(x, v̂).

In [7] time-varying tissues are also considered. It is, however, assumed that the changes
occur on a different timescale than cell movement such that the equilibrium distribution
ps(σ0, r) is quasi-stationary. This condition is not needed here and we consider the case
where q(t, x, v̂) changes dynamically over time. This leads to a coupled dynamical system
between the cell movement and the tissue changes.

The anisotropic biphasic theory (ABT) of Barocas and Tranquillo [2] is based on mass
and momentum balance equations between the tissue-cell phase and the interstitial fluid
phase. The fibre orientations are described by a matrix Ωf = Vq (in our notation). It is
assumed that the cell alignment, expressed through a matrix Ωc, follows the fibre alignment
as

Ωc =
3

trace(Ωf )k
(Ωf )k,

for some k > 0. In this sense, the orientation is instantaneous and not dynamical as in our
model. Examples of how to calculate Ωf , Ωc in specific two or three dimensional situations
and possible applications to wound healing are given in Barocas and Tranquillo [2, 22].

To apply the above model for mesenchymal motion one needs an efficient numerical
solver and one needs to identify appropriate initial conditions for Eq and Vq. Initial
conditions for the population density p̄(0, x) can be easily formulated according to an
experimental setup. To get an initial condition for q the following procedure can be used.
In two dimensions any direction in S1 can be characterized by one angle α ∈ [−π, π]
and θ = (cos(α), sin(α)). In three space dimensions two angles would be needed θ =
(cos(α) sin(β), sin(α) sin(β), cos(β)).

Now assume that a 2-dimensional tissue of undirected fibres is given as in Figure 3.
The two-dimensional area will be divided into cells C(i, j) and the angle of all tissue fibres
inside C(i, j) will be measured. For the cell shown in Figure 1 we find the angles (in
degree): αj = 110, 110, 150, 20, 25, 100, 10, 95, 110, 90, 40, 45, 175, where we only
use angles between 00 and 1800. We assume that the fibres are undirected and we add
the values of 180 + αj . Hence for the cell C(i, j) we find the angle distribution of αj

= 110, 110, 150, 20, 25, 100, 10, 95, 110, 90, 40, 45, 175, 290, 290, 330, 200, 205, 280,
190, 175, 290, 270, 220, 225, 355, and each of these angles can be chosen with probability
q(θ(αj)) = 1/26. Then q is defined and the mean direction and the variance-covariance
matrix can be calculated as

Eq =
( −0.04

0.04

)
, Vq =

(
0.49 0
0 0.51

)
.
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Figure 3: An example of a 2-D tissue

Here we see that the fibre network is, in the mean, oriented in the direction (−1, 1) and
the diffusion constants in x and y direction differ only slightly.

Overall the mesoscopic and macroscopic models derived here form a fruitful framework
for modeling of advection and diffusion in a highly non-homogeneous oriented environ-
ments. The models are very promising for applications to tumor metastasis in directed
tissue, for wound healing, and also for network formation. Of course, the use of these
models needs to be tested against experiments
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