Skip to main content
Log in

Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study kinetic models for chemotaxis, incorporating the ability of cells to assess temporal changes of the chemoattractant concentration as well as its spatial variations. For prescribed smooth chemoattractant density, the macroscopic limit is carried out rigorously. It leads to a drift equation with a chemotactic sensitivity depending on the time derivative of the chemoattractant density. As an application it is shown by numerical experiments that the new model can resolve the chemotactic wave paradox. For this purpose, the macroscopic equation is coupled to a simple activation-inhibition model for the chemoattractant which produces the chemoattractant waves typical for the slime mold Dictyostelium discoideum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcantara, F., Monk, M.: Signal propagation during aggregation in the slime mold Dictyostelium discoideum. J. Gen. Microbiol. 85, 321–334 (1974)

    Google Scholar 

  2. Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9 (2), 147–177 (1980)

    MathSciNet  Google Scholar 

  3. Chalub, F., Markowich, P., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh. Math., 2004

  4. Dallon, J., Othmer, H.G.: A discrete cell model with adaptive signalling for aggregation of Dictyostelium aggregation. Phil. Trans. R. Soc. Lond. B, 352, 391–417 (1997)

    Article  Google Scholar 

  5. Filbet, F., Laurencot, P., Perthame, B.: Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol. 50 (2), 189–207 (2005)

    MathSciNet  Google Scholar 

  6. Geiger, J., Wessels, D., Soll, D.: Human polymorphonuclear leukocytes respond to waves of chemoattractant, like Dictyostelium. Cell Motil. Cytoskeleton, 56, 27–44 (2003)

    Article  Google Scholar 

  7. Hillen, T.: Hyperbolic models for chemosensitive movement. Math. Models Methods Appl. Sci. 12 (7), 2002

    MathSciNet  Google Scholar 

  8. Hillen, T.: Transport equations with resting phases. European J. Appl. Math., In print

  9. Hillen, T.: On the L 2-moment closure of transport equations: The Cattaneo approximation. Discr. Cont. Dyn. Systems, Series B, 2004, to appear

  10. Hillen, T., Othmer, H.G.: The diffusion limit of transport equations derived from velocity jump processes. SIAM J. Appl. Math. 61 (3), 751–775 (2000)

    MathSciNet  Google Scholar 

  11. Höfer, T., Maini, P.K., Sherratt, J.A., Chaplain, M. A., Chauvet, P., Metevier, D., Montes, P.C., Murray, J.D.: A resolution of the chemotactic wave paradox. Appl. Math. Lett. 7 (2), 1–5 (1994)

    Google Scholar 

  12. Höfer, T., Sherratt, J.A., Maini, P.K.: Cellular pattern formation during Dictyostelium aggregation. Physica D, 85, 425–444 (1995)

    MATH  Google Scholar 

  13. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  Google Scholar 

  14. Martiel, J.L., Goldbeter, A.: A model based on receptor desensitization for cyclic AMP signalling in Dictyostelium cells. Biophys. J. 52, 807–828 (1987)

    Google Scholar 

  15. Murray, J.D.: Mathematical Biology. Springer, 1989

  16. Othmer, H.G., Dallon, J.: A continuum analysis of the signal seen by Dictyostelium discoideum. J. Theor. Biol. 19, 461–483 (1998)

    Google Scholar 

  17. Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Othmer, H.G., Hillen, T.: The diffusion limit of transport equations II: Chemotaxis equations. SIAM J. Appl. Math. 62 (4), 1222–1250 (2002)

    MathSciNet  Google Scholar 

  19. Othmer, H.G., Schaap, P.: Oscillatory cAMP signaling in the development of Dictyostelium discoideum. Comm. Theor. Biol. 5, 175–282 (1998)

    Google Scholar 

  20. Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

    MathSciNet  Google Scholar 

  21. Poupaud, F.: Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory. ZAMM Z. Angew. Math. Mech. 72 (8), 359–372 (1992)

    MathSciNet  Google Scholar 

  22. Poupaud, F., Rascle, M.: Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Comm. Partial Diff. Eq., 22 (1–2), 337–358 (1997)

    Google Scholar 

  23. Rappel, W.J., Thomas, P.J., Levine, H., Loomis, W.F.: Establishing direction during chemotaxis in eukaryotic cells. Biophysical J. 83, 1361–1367 (2002)

    Article  Google Scholar 

  24. Rivero, M., Tranquillo, R., Buettner, H., Lauffenburger, D.: Transport models for chemotactic cell populations based on individual cell behavior. Chem. Eng. Sci. 44 (12), 2881–2897 (1989)

    Google Scholar 

  25. Soll, D.R.: Behavioral studies into the mechanism of eukaryotic chemotaxis. J. Chem. Ecol. 16, 133–150 (1990)

    Article  Google Scholar 

  26. Stroock, D.W.: Some stochastic processes which arise from a model of the motion of a bacterium. Probab. Theory and Related Fields, 28, 305–315 (1974)

    MATH  Google Scholar 

  27. Tang, Y., Othmer, H.G.: A G-protein based model of adaption in Dictyostelium discoideum. Math. Biosci. 120, 25–76 (1994)

    Article  MATH  Google Scholar 

  28. Tang, Y., Othmer, H.G.: Excitation, oscillations and wave propagation in a G-protein based model of signal transduction in Dictyostelium discoideum. Phil. Trans. R. Soc. Lond. B 349, 179–195 (1995)

    Google Scholar 

  29. Varnum, B., Edwards, K., Soll, D.R.: Dictyostelium amoebae alter motility differently in response to increasing versus decreasing temporal gradients in cAMP. J. Cell Biol. 101, 1–5 (1985)

    Article  Google Scholar 

  30. Varnum, B., Edwards, K., Voss, E., Soll, D.R.: Amebae of Dictyostelium discoideum respond to an increasing temporal gradient of the chemoattractant cAMP with a reduced frequency of turning: evidence for a temporal mechanism in amoeboid chemotaxis. Cell Motil. Cytoskeleton 8, 7–17 (1987)

    Google Scholar 

  31. Varnum, B., Voss, E., Soll, D.R.: Frequency and orientation of pseudopod formation of Dictyostelium discoideum amoebae chemotaxing in a spatial gradient: further evidence for a temporal mechanism. Cell Motil. Cytoskeleton 8, 18–26 (1987)

    Google Scholar 

  32. Wessels, D., Murray, J., Soll, D.R.: Behaviour of Dictyostelium amoebae is regulated primarily by the temporal dynamics of the natural cAMP wave. Cell Motil. Cytoskeleton 23, 145–156 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Dolak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolak, Y., Schmeiser, C. Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms. J. Math. Biol. 51, 595–615 (2005). https://doi.org/10.1007/s00285-005-0334-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-005-0334-6

Keywords or Pharses

Navigation