Skip to main content
Log in

Derivation of hyperbolic models for chemosensitive movement

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

A Chapman-Enskog expansion is used to derive hyperbolic models for chemosensitive movements as a hydrodynamic limit of a velocity-jump process. On the one hand, it connects parabolic and hyperbolic chemotaxis models since the former arise as diffusion limits of a similar velocity-jump process. On the other hand, this approach provides a unified framework which includes previous models obtained by ad hoc methods or methods of moments. Numerical simulations are also performed and are motivated by recent experiments with human endothelial cells on matrigel. Their movements lead to the formation of networks that are interpreted as the beginning of a vasculature. These structures cannot be explained by parabolic models but are recovered by numerical experiments on hyperbolic models. Our kinetic model suggests that some kind of local interactions might be enough to explain them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177 (1980)

    Article  MATH  Google Scholar 

  2. Chalub, F.A.C.C., Markovich, P., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. To appear in Monatsh. Math.

  3. Chaplain, M.A.J.: A vascular growth, angiogenesis and vascular growth in solid tumors: the mathematical modelling of the stages of tumor development. Math. Comput. Modelling 23, 47–87 (1996)

    Article  MATH  Google Scholar 

  4. Dolak, Y., Hillen, T.: Cattaneo models for chemotaxis, numerical solution and pattern formation. J. Math. Biol. 46, 461–478 (2003)

    Article  MATH  Google Scholar 

  5. Dolak, Y., Schmeiser, C.: Kinetic models for chemotaxis: Hydrodynamic limits and the back-of-the-wave problem. ANUM preprint

  6. Filbet, F., Shu, C.-W.: Approximation of Hyperbolic Models for Chemosensitive Movement. MAPMO preprint

  7. Gajewski, H., Zacharias, K.: Global behavior of a reaction diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114 (1998)

    MATH  Google Scholar 

  8. Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., Di Talia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90, 118101 (2003)

    Article  Google Scholar 

  9. Godlewski, E., Raviart, P.-A.: Numerical approximation of hyperbolic systems of conservation laws. Appl. Math. Sci. 118, Springer, New York, 1996

  10. Herrero, M.A., Medina, E., Velázquez, J.J.L.: Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10, 1739–1754 (1997)

    Article  MATH  Google Scholar 

  11. Hillen, T., Othmer, H.G.: The diffusion limit of transport equations derived from velocity jump processes. SIAM J. Appl. Math. 61, 751–775 (2000)

    Google Scholar 

  12. Hillen, T.: Transport equations and chemosensitive movement. Habilitation Thesis, University of Tübingen, 2001

  13. Hillen, T.: Hyperbolic models for chemosensitive movement. Math. Models Methods Appl. Sci. 12, 1007–1034 (2002)

    Article  MATH  Google Scholar 

  14. Horstmann, D.: From 1970 until now: The Keller-Segel model in chemotaxis and its consequences I. Jahresberichte der DMV, 105, 103–165 (2003)

    Google Scholar 

  15. Horstmann, D.: From 1970 until now: The Keller-Segel model in chemotaxis and its consequences II. Jahresberichte der DMV, 106, 51–69 (2004)

    Google Scholar 

  16. Hwang, H.J., Kang, K., Stevens, A.: Global solutions of nonlinear transport equations for chemosensitive movement. To appear in SIAM J. Math. Anal.

  17. Keller, E.F., Segel, L.A.: Traveling band of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)

    Google Scholar 

  18. LeVeque, R.: Numerical methods for conservation laws. Birkhäuser, Basel, 1992

  19. Levine, H.A., Nilsen-Hamilton, M., Sleeman, B.D.: Mathematical modelling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. 42, 195–238 (2001)

    Article  MATH  Google Scholar 

  20. Liu, T.P.: Hyperbolic conservation laws with relaxation. Comm. Math. Phys. 108, 153–175 (1987)

    Google Scholar 

  21. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Appl. Sci. 5, 581–601 (1995)

    MATH  Google Scholar 

  22. Makino, T., Perthame, B.: Sur les solutions à symétrie sphérique de l’équation d’Euler-Poisson pour l’évolution d’étoiles gazeuses. Japan J. Appl. Math. 7, 165–170 (1990)

    MATH  Google Scholar 

  23. Marrocco, A.: 2D simulation of chemotaxis bacteria aggregation. ESAIM:M2AN, 37 (4), 617–630 (2003)

  24. Mirshahi, M.: Personnal communication

  25. Nieto, J., Poupaud, F., Soler, J.: High-field limit for the Vlasov-Poisson-Fokker-Planck system. Arch. Rational Mech. Anal. 158, 29–59 (2001)

    Article  MATH  Google Scholar 

  26. Othmer, H.G., Hillen, T.: The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math. 62, 1222–1250 (2002)

    Google Scholar 

  27. Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

    Article  MATH  Google Scholar 

  28. Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biol. Biophys. 15, 311–338 (1953)

    Google Scholar 

  29. Perthame, B.: Kinetic formulation of conservation laws. Oxford Univ. Press, 2002

  30. Senba, T., Suzuki, T.: Chemotactic collapse in parabolic-elliptic systems of mathematical biology. Adv. Diff. Eqns. 6, 21–50 (2001)

    MATH  Google Scholar 

  31. Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. The EMBO J. 22, 1771–1779 (2003)

    Article  Google Scholar 

  32. Stevens, A.: Derivation of chemotaxis-equations as limit dynamics of moderately interacting stochastic many particle systems. SIAM J. Appl. Math. 61, 183–212 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Velázquez, J.J.L.: Stability of some mechanisms of chemotactic aggregation. SIAM J. Appl. Math. 62, 1581–1633 (2002)

    Google Scholar 

  34. Zeldovich, Ya.B.: Gravitational instability : an approximate theory for large density perturbations. Astron. Astrophys. 5, 84 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Filbet.

Additional information

Acknowledgement The authors thank M. Mirshahi (INSERM E355 - Faculté de Médecine de Paris VI) for fruitful discussions and providing experimental data. Helpful discussions on numerical and modeling issues with A. Gamba and M. Lemou are gratefully acknowledged. This work was also partially supported by the European network HYKE, funded by the EC as contract HPRN-CT-2002-00282.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filbet, F., Laurençot, P. & Perthame, B. Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol. 50, 189–207 (2005). https://doi.org/10.1007/s00285-004-0286-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0286-2

Keywords

Navigation