Skip to main content
Log in

Time-Course Variations of DNA Damage and Biomarkers of Oxidative Stress in Tilapia (Oreochromis niloticus) Exposed to Effluents From a Swine Industry

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

DNA damage (Comet assay), lipoperoxidation levels (TBARS), and several biomarkers of oxidative stress such as catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione S-transferase (GST), and contents of reduced (GSH) and total (TG) glutathione were measured in liver and blood (Comet assay) of tilapia (Oreochromis niloticus) exposed for 7, 15, 30 (subchronic exposure), 60, and 90 days (chronic exposure) to two treatment lagoons of a swine-processing plant, the first an anaerobic lagoon and the second a final treatment lagoon. After the 15th day, TBARS increased in fish exposed to both lagoons, decreased on the 30th day, and on the 90th day remained similar to controls. Fish exposed subchronically and chronically to both effluents showed consistently greater DNA damage. The CAT and GPx activities showed similar profiles and were induced only during the first week and during the first and second months. GST activity was induced throughout the experimental period. On the other hand, GR activities showed inverted profiles, with progressively decreased activities in the liver of fish exposed to the anaerobic lagoon, and progressively increased activities in fish exposed to the final lagoon. GSH showed higher contents in liver after 60 and 90 days of exposure to the final lagoon. GSSG contents were higher in fish exposed to the final lagoon throughout the experimental period. After 15 days, tilapia exposed to both lagoons showed enhanced total glutathione contents. The hepatic antioxidant system and biomarkers of oxidative stress such as DNA fragmentation and TBARS contents of tilapia exposed to both lagoons presented biphasic profiles. These changes in the antioxidant status also indicate that the industrial treatment is not adequate to avoid damaging environmental effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aebi H, (1984) Catalase In Vitro. Methods Enzymol. 105:121–126

    CAS  Google Scholar 

  • Ahmad I, Hamid T, Fatima M, Chand HS, Jain SK, Athar M, Raisuddin S (2000) Induction of hepatic antioxidants in freshwater catfish (Channa puntactus bloch) is a biomarker of paper mill effluent exposure. Biochim Biophys Acta 1523:37–48

    CAS  Google Scholar 

  • Almar MM, Diaz-Mayans J, Fernando MD, Nunez A, Romero FJ (1988a) Organ distribution of glutathione and some glutathione-related enzymatic activities in Procambarus clarkii: effect of sex, size and nutritional state. Comp Biochem Physiol 89:471–474

    Google Scholar 

  • Associação Brasileira de Normas Técnicas (ABNT) (2003) Ensaio de toxicidade aguda com peixes: ensaio de ecotoxicologia, Projeto 00:001.044-001, Rio De Janeiro

    Google Scholar 

  • Belpaeme K, Delbeke L, Zhu M, Kirsch-Volders (1996) Cytogenetic studies of PCB77 on brown trout Salmo trutta fario using the micronucleus test and the alkaline comet assay. Mutag 11(5):485–492

    CAS  Google Scholar 

  • Bend JR, James MO (1978) Xenobiotic metabolism in marine and freshwater species. Biochem Biophys Perspect Mar Biol 4:125–130

    CAS  Google Scholar 

  • Betti C, Nigro M (1996) The comet assay for the evaluation of the genetic hazard of pollutants in cetaceans: preliminary results on the genotoxic effects of methyl mercury on the bottlenosed dolphin Tursiops truncatus lymphocytes in vitro. Mar Poll Bull 32:545–548

    Article  CAS  Google Scholar 

  • Beutler E, Duran O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab And Clin Med 61:882–890

    CAS  Google Scholar 

  • Bird RP, Draper AH (1984) Comparative studies on different methods of malondialdehyde determination. Methods Enzymol 90:105–110

    Google Scholar 

  • Black MC, Ferell JR, Horning RC, Martin LK (1996) DNA strand breakage in freshwater mussels (Anodonta grandis) exposed to lead in the laboratory and field. Environ Toxicol Chem 15:802–808

    Article  CAS  Google Scholar 

  • Calberg I, Mannervik B (1985) Glutathione reductase from rat liver. Methods Enzymol 113:484–490

    Google Scholar 

  • Chevre N, Gagne F, Gagnon P, Blaise C (2002) Application of rough sets analysis to identify polluted aquatic sites based on a battery of biomarkers: a comparison with classical methods. Chemosphere 51:13–23

    Google Scholar 

  • Chow CK; Hong CB (2002) Dietary vitamin E and selenium and toxicity of nitrite and nitrate. Toxicology 180:195–207

    CAS  Google Scholar 

  • Ciccotelli M, Crippa S, Colombo A (1998) Bioindicators for toxicity assessment of effluents from a wastewater treatment plant. Chemosphere 37:2823–2832

    Article  CAS  Google Scholar 

  • Collins AR, Ma AG, Duthie SJ (1995) The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutat Res 336:69–77

    CAS  Google Scholar 

  • CONAMA (Conselho Nacional Do Meio Ambiente). (2003) Revisão da Resolução 020/86: sobre classificação e enquadramento de classes d’água, Brasília

  • Cosson RP, (2000) Bivalve metallothionein as a biomarker of aquatic ecosystem pollution by trace metals: limits and perspectives. Cell Mol Biol 46:295–309

    CAS  Google Scholar 

  • Cotelle S, Férard JF (1999) Comet assay in genetic ecotoxicology: a review. Env Mol Mut 34:246–255

    CAS  Google Scholar 

  • Depledge MH, Fossi MC (1994) The role of biomarkers in environmental assessment invertebrates. Ecotoxicology 3:161–172

    Article  Google Scholar 

  • Di Giulio RT, Habig C, Gallagher EP (1993) Effects of black rock harbour sediments on indices of biotransformation, oxidative stress and DNA integrity in channel catfish. Aquat Toxicol 26:1–22

    Article  CAS  Google Scholar 

  • Fatima M, Ahmad I, Sayeed I, Athar M, Raisuddin S (2000) Pollutant-induced over-activation of phagocytes is concomitantly associated with peroxidative damage in fish tissues. Aquat Toxicol 49:243–250

    Article  CAS  Google Scholar 

  • Flohé I, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Google Scholar 

  • Fournier D, Bride JM, Poirie M (1992) Insect glutathione S-transferases biochemical characteristics of the major forms of houseflies susceptible and resistant to insecticides. J Biol Chem 267:1840–1845

    CAS  Google Scholar 

  • Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426

    CAS  Google Scholar 

  • Fridovich I, (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann NY Acad Sci 893:13–18

    CAS  Google Scholar 

  • Gallagher EP, Gross TS, Sheehy KM (2001) Decreased glutahione S-transferase expression and activity and altered sex steroids in Lake Apopka brown bullheads. Aquat Toxicol 55:223–237

    Article  CAS  Google Scholar 

  • Hai DQ, Varga SI, Matkovics B (1997) Organophosphate effects on antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus). Comp Biochem Physiol 117c:83–88

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Antioxidant defenses. In: Halliwell B, Gutteridge JMC (eds) Free Radicals in Biology and Medicine. Oxford Uinversity Press, New York, p 175

    Google Scholar 

  • Hasspieler BM, Behar JV, Di Giulio RT (1994) Glutathione dependent defense in channel catfish (Ictalurus puntactus) and brown bulhead (Ameirus nebulosus). Ecotoxicol Environ Saf 28:82–90

    Article  CAS  Google Scholar 

  • Huang C, Chang R, Huang S, Chen W (2003) Dietary vitamin E supplementation affects tissue lipid peroxidation of hybrid tilapia, Oreochromis niloticus x O. aureus. Comp Biochem Physiol 134B:265–270

    CAS  Google Scholar 

  • Kappus H, (1987) Oxidative stress in chemical toxicity. Arch Toxicol 60:144–149

    Article  CAS  Google Scholar 

  • Keen JH, Habig WH, Jakoby WB (1976) Mechanism for the several activities from glutathione S-transferase. J Biol Chem 251:6183–6188

    CAS  Google Scholar 

  • Kirlin WG, Cai I, Thompson SA (1999) Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic Biol Med 27:1208–1218

    Article  CAS  Google Scholar 

  • Kobayashi M, Rappaport E, Blasband A, Semeraro A, Sartore M, Surrey S, Fortina P (1995) Fluorescence-based DNA minisequence analysis of detection of known single-base changes in genomic DNA. Mol Cell Probes 9:175–182

    Article  CAS  Google Scholar 

  • Larsson DG, Kinnberg K, Sturve J (2002) Studies of masculinization, detoxification, and oxidative stress responses in guppies (Poecilia reticulata) exposed to effluent from a pulp mill. Ecotox Environ Saf 52:13–20

    Google Scholar 

  • Lemaire P, Forlin L, Livingstone DR (1996) Responses of hepatic biotransformation and antioxidant enzymes to CYP1A-inducers (3-methylcholanthrene, b-naphthonavone) in sea bass (Dicentrarchus labrax), dab (Limanda limanda) and rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 36:141–160

    Article  CAS  Google Scholar 

  • Lima PL, Benassi JC, Pedrosa RC, Wilhelm Filho D (2003) Detection of DNA damage in haemocytes of Mytella guaynensis mussel from two mangroves on Santa Catarina Island, Brazil, using comet assay. Genet Mol Biol 26/2:124

    Google Scholar 

  • Lindesjoo E, Adolfsson-Erici M, Ericson G, Forlin L (2002) Biomarkers responses and resin acids in fish chronically exposed to effluents from a total chlorine-free pulp mill during regular production. Ecotox Environ Saf 53:238–247

    Article  CAS  Google Scholar 

  • Livingstone DR, (1998) The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp Biochem Physiol 120A:43–49

    CAS  Google Scholar 

  • Maria VL, Correia AC, Santos MA (2003) Genotoxic and hepatic biotransformation responses induced by the overflow of pulp mill and secondary-treated effluents on Anguilla anguilla L. Ecotox Environ Saf 55:126–137

    Article  CAS  Google Scholar 

  • Nacci D, Nelson S, Nelson W, Jackim E (1992) Application of the DNA alkaline unwinding assay to detect DNA strand-breaks in marine bivalves. Mar Environ Res 33:83–100

    Article  CAS  Google Scholar 

  • Nigro M, Frenzilli G, Scarcelli V, Gorbi S, Regoli F (2002) Induction of DNA strand breakage and apoptosis in the eel Anguilla anguilla. Marin Environ Res 54:517–520

    CAS  Google Scholar 

  • Ohkawa H (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Oruç EO, Uner N (2000) Combined effects of 2,4-D and azinphosmethyl on antioxidant enzymes and lipid peroxidation in liver of Oreochromis niloticus. Comp Biochem Physiol 127c:291–296

    Google Scholar 

  • Pandey S, Parvez S, Sayeed I, Rizwanul H, Bin-Hafez B, Raisuddin S (2003) Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Sci Total Environ 309:105–115

    Article  CAS  Google Scholar 

  • Pandrangi R, Petras M, Ralph S, Vrzoc M (1995) Alkaline single cell gel (Comet) assay and genotoxicity monitoring using bullheads and carp. Environ Mol Mutag 26:345–356

    CAS  Google Scholar 

  • Pedrosa RC, (1997) Effect of bleaching Eucalyptus pulp effluent from a Brazilian industry on the expression of cytochrome p4501A1 of tilapia (Oreochromis niloticus). Fifth Braz Symp Chem Lignins Wood Comp 449–453

  • Pedrosa RC, De Bem AF, Locatelli C, Pedrosa RC, Geremias R, Wilhelm Filho D (2001) Time-dependent oxidative stress caused by benznidazole. Redox Report 6:265–270

    Article  CAS  Google Scholar 

  • Ralph S, Petras M, Pandrangi M, Vrzoc M (1996) Alkaline single cell gel comet assay and genotoxicity monitoring using two species of tadpoles. Environ Mol Mutag 28/2:112–120

    Google Scholar 

  • Ramelow GJ, Maples RS, Thompson RL, Mueller CS, Webre C, Beck JN (1987) Periphyton as monitors for heavy metal pollution in the Calcasieu River estuary. Environ Poll 43:247–261

    Article  CAS  Google Scholar 

  • Regoli F, Principato G (1995) Glutathione, glutathione-dependent antioxidant enzymes in mussel Mytilus galloprovincialis, exposed to metals. Aquatic Toxicol 31:143–164

    CAS  Google Scholar 

  • Regoli F, Nigro M, Orlando E (1998) Lysosomal and antioxidant responses to metals in the Antarctic scallop Adamussium colhecki. Aquat Toxicol 40:375–392

    Article  Google Scholar 

  • Regoli F, Frenzilli G, Bocchetti R, Annarumma F, Scarcelli V, Fattorini D, Nigro M (2004) Time-course variations of oxyradical metabolism, DNA integrity and lysosomal stability in mussels, Mytilus galloprovincialis, during a field translocation experiment. Aquat Toxicol 68:167–178

    Article  CAS  Google Scholar 

  • Ribeiro L, Tribess T, Torres MA, Soares CHL, Pedrosa RC, Agostini J, Bueno A, Wilhelm Filho D (2000) Estresse oxidativo em tilápia (Oreochromis niloticus) exposta ao efluente de industria têxtil. In: Evaldo LGE, Clarice MRBP, Odete R, Maria BCB, Abílio LON (eds), Ecotoxicologia. São Carlos: Rima, p178

    Google Scholar 

  • Rodriguez-Ariza AE, Dorado G (1991) Biochemical effects of environmental pollution in fishes from Spanish South-Atlantic littoral. Biochem Soc Trans 19:301s

    Google Scholar 

  • Rodríguez-Ariza AE, Martínez-Lara E, Pascual P, Pedrajas JR, Abril N, Dorado G, Toríbio F, Bárcena JA, Peinado J, Pueyo C, López-Barea J (1993a) Biochemical and genetic indices of marine pollution in Spanish littoral. Sci Total Environ (suppl):109–116

    Google Scholar 

  • Rodríguez-Ariza AE, Peinado J, Pueyo C, López-Barea J (1993b) Biochemical indicators of oxidative stress in fish from polluted littoral areas. Can J Fish Aquat Sci 50:2568–2573

    Google Scholar 

  • Ross D, (1988) Glutathione, free radicals and chemotherapeutic agents: mechanisms of free-radical induced toxicity and glutathione-dependent protection. Pharmacol Ther 37:231–249

    Article  CAS  Google Scholar 

  • Sayeed I, Parvez S, Pandey S (2003) Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa puntactus bloch. Ecotox Environ Saf 56:295–301

    Article  CAS  Google Scholar 

  • Silva AM, Novelli EL, Fascineli ML, Almeida JA (1999) Impact of an environmentally realistic intake of water contaminants and superoxide formation on tissues of rats. Environ Poll 105:243–249

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    CAS  Google Scholar 

  • Stone KC, Hunt PG, Humenik FJ, Johnson MH (1998) Impact of swine waste application on ground and stream water quality in an eastern coastal plain watershed. Trans Asae 41:1665–1670

    Google Scholar 

  • Tietze F, (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  Google Scholar 

  • Torres MA, Testa CP, Gaspari C, Masutti MB, Panitz CM, Pedrosa RC, Almeida EA, Di Mascio PD, Wilhelm Filho D (2002) Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil. Mar Poll Bull 44:923–932

    Google Scholar 

  • Uhlig S, Wendel A (1992) The physiological consequences of glutathione variations. Life Sci 51:1083–1094

    Article  CAS  Google Scholar 

  • Wilhelm Filho D, (1996) Fish antioxidant defenses: A comparative approach. Braz J Med Biol Res 29:1735–1742

    CAS  Google Scholar 

  • Wilhelm Filho D, Baptista IE, Soares CH, Pedrosa RC (1997) The effect of pulp mill effluent on two fish species. Fifth Braz Symp Chem Lignins Wood others Comp 612–619

  • Wilhelm Filho D, Torres MA, Marcon JL, Fraga CG, Boveris A (2000) Comparative antioxidant defenses in vertebrates: emphasis on fish and mammals. Comp Biochem Physiol 7:33–45

    CAS  Google Scholar 

  • Wilhelm Filho D, Torres MA, Tribess TB, Pedrosa RC, Soares CH (2001) Influence of season and pollution on the antioxidant defenses of the cichlid fish acará (Geophagus brasiliensis). Braz J Med Biol Res 34:719–726

    Article  CAS  Google Scholar 

  • Wilhelm Filho D, Sell F, Ribeiro L, Ghisland M, Carrasquedo F, Fraga CG, Wallauer JP, Simões-Lopes PC, Uhart MM (2002) Comparison between the antioxidant status of terrestrial and diving mammals. Comp Biochem Physiol 133A:885–892

    CAS  Google Scholar 

  • Zhang J, Shen H, Wang X, Wu J, Xue Y (2004) Effects of chronic exposure of 2,4-diclorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55:167–174

    CAS  Google Scholar 

Download references

Acknowledgments

P.L.L. and J.C.B. were recipients of CNPq-CTHidro scholarships and D.W.F. is a recipient of a research fellowship from CNPq (proc. 307485/2003-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wilhelm Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, P.L., Benassi, J.C., Pedrosa, R.C. et al. Time-Course Variations of DNA Damage and Biomarkers of Oxidative Stress in Tilapia (Oreochromis niloticus) Exposed to Effluents From a Swine Industry. Arch Environ Contam Toxicol 50, 23–30 (2006). https://doi.org/10.1007/s00244-004-0178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-004-0178-x

Keywords

Navigation