Skip to main content
Log in

A tubular vaporizing liquid micro-thruster with induction heating

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper presents a study of a new tubular vaporizing liquid micro-thruster (VLM) with induction heating. The developed micro-thruster consists of a micro-heater core, an excitation coil, a vaporizing chamber, a nozzle and a micro-channel, all integrated in a glass tube with a dimension of 3 mm (outer diameter) × 18 mm (length). The temperature of the micro-heater core is tested with experiments and an optimal AC frequency is selected for the VLM based on the experimental tests. Vaporization of water-propellant feeding with different flow rates range of 0.1 ml/min − 0.3 ml/min is demonstrated. A maximum thrust force of 680 μN at 0.3 ml/min propellant consumption rate is realized measured with a pendulum thrust stand. Comparing with other VLMs, one merit of the new VLM is that there is no physical connection between the micro-heater core and the power supply. Other merits of the new VLM proposed by this paper is that it can work with a larger input power, provide more heat energy and generate a relative larger thrust force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barnhart DJ, Vladimirova T, Sweeting MN (2007) Very-small-satellite design for distributed space missions. J Spacecr Rocket 44(6):1294–1306

    Article  Google Scholar 

  2. Bouwmeester J, Guo J (2010) Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology. Acta Astronaut 67(7–8):854–862

    Article  Google Scholar 

  3. Böhrk H, Auweter-Kurtz M (2009) Thrust measurement of the hybrid electric thruster TIHTUS by a baffle plate. J Propuls Power 25(3):729–736

    Article  Google Scholar 

  4. Cen JW, Xu JL (2010) Performance evaluation and flow visualization of a MEMS based vaporizing liquid micro-thruster. Acta Astronaut 67(3–4):468–482

    Article  Google Scholar 

  5. Cheah KH, Low KS (2015) Fabrication and performance evaluation of a high temperature co-fired ceramic vaporizing liquid microthruster. J Micromech Microeng 25(1):015013

    Article  Google Scholar 

  6. De Giorgi MG, Fontanarosa D (2019) A novel quasi-one-dimensional model for performance estimation of a vaporizing liquid microthruster. Aerosp Sci Technol 84:1020–1034

    Article  Google Scholar 

  7. Dandavino S, Ataman C, Ryan CN, Chakraborty S, Courtney D, Stark JPW, Shea H (2014) Microfabricated electrospray emitter arrays with integrated extractor and accelerator electrodes for the propulsion of small spacecraft. J Micromech Microeng 24(7):075011

    Article  Google Scholar 

  8. Deng P, Lee YK, Cheng P (2005) Measurements of micro bubble nucleation temperatures in DNA solutions. J Micromech Microeng 15(3):564–574

    Article  Google Scholar 

  9. Gao Y, Ma YF, Liu JT (2014) A review of the vaporizing liquid microthruster technology. 2014 ISFMFE - 6th international symposium on fluid machinery and fluid engineering

  10. Grubišić AN, Gabriel SB (2010) Development of an indirect counterbalanced pendulum optical-lever thrust balance for micro-to millinewton thrust measurement. Meas Sci Technol 21(10):105101

    Article  Google Scholar 

  11. Karthikeyan K, Chou SK, Khoong LE, Tan YM, Lu CW, Yang WM (2012) Low temperature co-fired ceramic vaporizing liquid microthruster for microspacecraft applications. Appl Energy 97:577–583

    Article  Google Scholar 

  12. Kundu P, Bhattacharyya TK, Das S (2012) Design, fabrication and performance evaluation of a vaporizing liquid microthruster. J Micromech Microeng 22(2):025016

    Article  Google Scholar 

  13. Kundu P, Sinha AK, Bhattacharyya TK, Das S (2013) MnO2 nanowire embedded hydrogen peroxide monopropellant MEMS thruster. J Microelectromech Syst 22(2):406–417

    Article  Google Scholar 

  14. Köhler J, Simu U, Bejhed J, Kratz H, Jonsson K, Nguyen H, Bruhn F, Hedlund C, Lindberg U, Hjort K, Stenmark L (2002) A hybrid cold gas microthruster system for spacecraft. Sensors Actuators A Phys 97(1):587–598

    Article  Google Scholar 

  15. Lee J, Kim T (2013) MEMS solid propellant thruster array with micro membrane igniter. Sensors Actuators A Phys 190:52–60

    Article  Google Scholar 

  16. Liu BD, Hou YP, Li DS, Yang JH (2015) A thermal bubble micro-actuator with induction heating. Sensors Actuators A Phys 222:8–14

    Article  Google Scholar 

  17. Liu BD, Li XR, Yang JH, Gao GH (2019) Recent advances in MEMS-based microthrusters. Micromachines. 10(12):818

    Article  Google Scholar 

  18. Li XC, Huang YY, Chen XQ, Xu XM, Xiao DB (2018) Electro-thermal analysis of an Al–Ti multilayer thin film microheater for MEMS thruster application. Microsyst Technol 24:2409–2417

    Article  Google Scholar 

  19. Maurya DK, Das S, Lahiri SK (2005) An analytical model of a silicon MEMS vaporizing liquid microthruster and some experimental studies. Sensors Actuators A Phys 122(1):159–166

    Article  Google Scholar 

  20. Mueller J, Tang W, Wallace A, Lawton R, Li W, Bame D, Bame D (1997) Design, analysis and fabrication of a vaporizing liquid micro-thruster. In 33rd joint propulsion conference and exhibit, AIAA

  21. Mukerjee EV, Wallace AP, Yan KY, Howard DW, Smith RL, Collins SD (2000) Vaporizing liquid microthruster. Sensors Actuators A Phys 83(1–3):231–236

    Article  Google Scholar 

  22. Patel KD, Bartsch MS, McCrink MH, Olsen JS, Mosier BP, Crocker RW (2008) Electrokinetic pumping of liquid propellants for small satellite microthruster applications. Sensors Actuators B Chem 132(2):461–470

    Article  Google Scholar 

  23. Ranjan R, Karthikeyan K, Riaz F, Chou SK (2018) Cold gas propulsion microthruster for feed gas utilization in micro satellites. Appl Energy 220:921–933

    Article  Google Scholar 

  24. Rossi C, Orieux S, Larangot B, Do Conto T, Esteve D (2002) Design, fabrication and modeling of solid propellant microrocket-application to micropropulsion. Sensors Actuators A Phys 99(1–2):125–133

    Article  Google Scholar 

  25. Silva MA, Guerrieri DC, Van Zeijl H, Cervone A, Gill E (2017) Vaporizing liquid microthrusters with integrated heaters and temperature measurement. Sensors Actuators A Phys 265:261–274

    Article  Google Scholar 

  26. Xiong J, Zhou Z, Sun D, Ye X (2005) Development of a MEMS based colloid thruster with sandwich structure. Sensors Actuators A Phys 117(1):168–172

    Article  Google Scholar 

  27. Ye XY, Tang F, Ding HQ, Zhou ZY (2001) Study of a vaporizing water micro-thruster. Sensors Actuators A Phys 89(1–2):159–165

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Innovative Methodology Project of China (No. 2018IM0301004) and Natural Science Foundation of Beijing (No. 3192010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bendong Liu.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Yang, X., Wang, Y. et al. A tubular vaporizing liquid micro-thruster with induction heating. Heat Mass Transfer 56, 2035–2043 (2020). https://doi.org/10.1007/s00231-020-02836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02836-7

Navigation