Skip to main content
Log in

Experimental investigation of convective drying kinetics of kiwi under different conditions

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The effects of air temperature, velocity and humidity on drying characteristics of kiwi are experimentally investigated for the temperatures in the range of 50–80 °C, of the velocities 0.5–2.0 m/s, of the relative humidity values of 5–20 % and for two slice thicknesses. It is observed that there is a very close agreement between the model of Midilli et al. (Dry Technol 20:1503–1513, 2002) and the present study with coefficients of correlation R2 of 0.9949–0.9996.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a, b, c :

Constants of model equations

D eff :

Effective diffusion coefficient (m2/s)

D 0 :

Arrhenius factor (m2/s)

DR :

Drying rate (g w /g db min)

E a :

Activation energy (kJ/mol)

k :

Drying rate constant in model equations (1/min)

K :

Slope

L :

Half thickness of slice (m)

M d :

Mass of dry matter (g)

M o :

Initial moisture content (g w /g dm )

M t :

Moisture content at time t (g w /g dm )

M w :

Mass of wet matter (g)

M db :

Moisture content in dry base (g w /g dm )

M wb :

Moisture content in wet base (%)

M t+∆t :

Moisture content at time t + ∆t (g w /g dm )

MR :

Moisture ratio

n :

Exponents in model equations

R :

Universal gas constant (kJ/mol K)

R 2 :

Correlation coefficient

RMSE :

Root mean square error

RH :

Relative humidity (%)

t :

Time (min)

T :

Temperature (°C)

T abs :

Absolute temperature (K)

V :

Air velocity (m/s)

Δt:

Time difference (min)

References

  1. Midilli A, Kucuk H, Yapar Z (2002) A new model for single layer drying. Dry Technol 20:1503–1513

    Article  Google Scholar 

  2. Cassano A, Figoli A, Tagarelli A, Sindona G, Drioli E (2006) Integrated membrane process for the production of highly nutritional kiwifruit juice. Desalination 189:21–30

    Article  Google Scholar 

  3. Ayensu A (1997) Dehydration of food crops using a solar dryer with convective heat flow. Sol Energy 59:121–126

    Article  Google Scholar 

  4. Kassem AS (1998) Comparative studies on thin layer drying models for wheat. In: Proceedings of the 13th international congress on agricultural engineering Morocco

  5. Diamante LM, Munro PA (1993) Mathematical modeling of the thin layer solar drying of sweet potato slices. Sol Energy 51:271–276

    Article  Google Scholar 

  6. Pal US, Chakraverty A (1997) Thin layer convection drying of mushrooms. Energy Convers Manag 38:107–113

    Article  Google Scholar 

  7. Yaldiz O, Ertekin C (2001) Thin layer solar drying of some different vegetables. Dry Technol 19:583–596

    Article  Google Scholar 

  8. Wang CY, Singh RP (1978) A single layer drying equation for rough rice. Trans Am Soc Agric Eng 78:3001

    Google Scholar 

  9. Maskan M (2001) Kinetics of colour change of kiwi fruits during hot air and microwave drying. J Food Eng 48:169–175

    Article  Google Scholar 

  10. Ceylan I, Aktas M, Dogan H (2007) Mathematical modeling of drying characteristics of tropical fruits. Appl Therm Eng 27:1931–1936

    Article  Google Scholar 

  11. Kaya A, Aydin O, Dincer I (2008) Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits (Actinidia Deliciosa Planch). J Food Eng 88:323–330

    Article  Google Scholar 

  12. Fathi M, Mohebbi M, Razavi SMA (2011) Effect of osmotic dehydration and air drying on physicochemical properties of dried kiwifruit and modeling of dehydration process using neural network and genetic algorithm. Food Bioprocess Technol 4(8):1519–1526

    Article  Google Scholar 

  13. Simal S, Femenia A, Garau MC, Rossello C (2005) Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. J Food Eng 66:323–328

    Article  Google Scholar 

  14. Simal S, Femenia A, Carcel JA, Rossello C (2005) Mathematical modelling of the drying curves of kiwi fruits: influence of the ripening stage. J Sci Food Agric 85:425–432

    Article  Google Scholar 

  15. Diamante LM, Ihns R, Savage GP, Vanhanen L (2010) A new mathematical model for thin layer drying of fruits. Int J Food Sci Technol 45:1956–1962

    Article  Google Scholar 

  16. Mohammadi A, Rafiee S, Keyhani A, Emam Djomeh Z (2009) Moisture content modeling of sliced kiwifruit (cv. Hayward) during drying. Pak J Nutr 8(1):78–82

    Article  Google Scholar 

  17. Shahi MMN, Mokhtarian M, Entezari A (2014) Optimization of thin layer drying kinetics of kiwi fruit slices using genetic algorithm. Adv Nat Appl Sci 8(11):11–19

    Google Scholar 

  18. O’Connor-Shaw RE, Roberts R, Ford AL, Nottingham SM (1994) Shelf-life of minimally processed honeydew, kiwifruit, papaya, pineapple and cantaloupe. J Food Sci 59(6):1202–1206 1215

    Article  Google Scholar 

  19. AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington

    Google Scholar 

  20. ASAE (1983) Moisture measurement-peanuts. In: ASAE standard of ASAE S.410.1. Agricultural Engineering Yearbook of Standards, pp 329–331

  21. Mohammadi A, Rafiee S, Keyhani A, Emam Djomeh Z (2008) Estimation of thin layer drying characteristics of kiwifruit (cv. Hayvard) with use of Page’s Model. Am-Euras J Agric Environ Sci 3(5):802–805

    Google Scholar 

  22. Sadin R, Chegini GR, Sadin H (2014) The effect of temperature and slice thickness on drying kinetics tomato in the infrared dryer. Heat Mass Transf 50:501–507

    Article  Google Scholar 

  23. Demiray E, Tulek Y (2012) Thin layer drying of tomato (Lycopersicum esculentum Mill. Cv. Rio Grande) slices in a convective hot air dryer. Heat Mass Transf 48:841–847

    Article  Google Scholar 

  24. Lomauro CJ, Bakshi AS, Labuza TP (1985) Moisture transfer properties of dry and semimoist foods. J Food Sci 50:397–400

    Article  Google Scholar 

  25. Demiray E, Tulek Y (2014) Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat Mass Transf 50(6):779–786

    Article  Google Scholar 

  26. Pala M, Mahmutoglu T, Saygi B (1996) Effects of pretreatments on quality of open-air and solar dried apricots. Mol Nutr Food Res 10:137–141

    Google Scholar 

  27. Nuh DD, Brinkworth BJ (1997) A novel thin layer model for crop drying. Trans Am Soc Agric Eng 40:659–669

    Article  Google Scholar 

  28. Sacilik K (2007) Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). J Food Eng 79:23–30

    Article  Google Scholar 

  29. Holman JP (2011) Experimental methods for engineers, 8th edn. McGraw-Hill, New York

    Google Scholar 

  30. Orikasa T, Wu L, Shiina T, Tagawa A (2008) Drying characteristics of kiwifruit during hot air drying. J Food Eng 85:303–308

    Article  Google Scholar 

  31. Zogzas NP, Maroulis ZB, Marinos-Kouris D (1996) Moisture diffusivity data compilation in foodstuffs. Dry Technol 14:2225–2253

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support provided by Scientific Research Projects Coordinatorship of Selçuk University Contract No: 09101056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Darıcı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darıcı, S., Şen, S. Experimental investigation of convective drying kinetics of kiwi under different conditions. Heat Mass Transfer 51, 1167–1176 (2015). https://doi.org/10.1007/s00231-014-1487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1487-x

Keywords

Navigation