Skip to main content
Log in

Natural convection enhancement by a discrete vibrating plate and a cross-flow opening: a numerical investigation

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this study, a unique combination of a vibrating plate and a cross-flow passage is proposed as a means of enhancing natural convection cooling. The enhancement potential was estimated based on numerical studies involving a representative model which includes a short, transversely oscillating plate, placed over a transverse cross-flow opening in a uniformly heated vertical channel wall dividing two adjacent vertical channels. The resulting velocity and temperature fields are analyzed, with the focus on the local thermal effects near the opening. The simulation indicates up to a 50% enhancement in the local heat transfer coefficient for vibrating plate amplitudes of at least 30% of the mean clearance space and frequencies of over 82 rad/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Oscillation amplitude Eq. (1), m

b :

Channel width Fig. 1b, m

Fig. 1
figure 1

Combined cross-flow passage-transverse oscillating plate cooling method: (a) model under investigation; (b) geometric specifications. Note gravity is acting in the negative x direction as indicated by the g

BT :

Board thickness Fig. 1b, m

C :

Instantaneous clearance Fig. 1b, m

CM :

Mean clearance Eq. (1), m

c p :

Specific heat, J/kg K

d :

Nomenclature Eq. (10c)

d os :

Instantaneous displacement of oscillating plate Eq. (1), m

g :

Gravitational acceleration, m/s2

Gr :

Grashof number \( Gr = {{\beta g\Updelta T_{ref} L_{ref}^{3} }/{v^{2} }} \)

h :

Heat transfer coefficient Eq. (15), W/m2 K

HL :

Length of hole or opening Fig. 1b, m

k :

Thermal conductivity, W/m K

L :

Reference length in x direction, m

n :

Normal direction

P D :

Dynamic pressure, Pa

PL :

Length of oscillating plate Fig. 1b, m

Pr :

Prandtl number \( Pr = v/(k/\rho c_{p} ) \)

PT :

Thickness of oscillating plate Fig. 1b, m

q, q a :

Heat flux, applied heat flux Eq. (14), W/m2

t :

Time, s

T :

Temperature, K

TL :

Total channel length Fig. 1b, m

x, y:

Coordinates, m

u, v:

x, y components of velocity, m/s

\( \overrightarrow {V} \) :

Velocity vector, m/s

V :

Nomenclature of Eq. (10c)

V os :

Instantaneous velocity of oscillating plate Eq. (1) m/s

β :

Coefficient of thermal expansion, 1/K

μ :

Absolute viscosity, N s/m2

ν :

Kinematic viscosity, m2/s

ρ :

Density, kg/m3

ω :

Oscillation frequency, rad./s, nomenclature in Eq. (10)

\( \left( {} \right)^* \) :

Dimensionless

\( \overline{{\left( {} \right)}} \) :

Average

\( \overrightarrow {{\left( {} \right)}} \) :

Vector

\( \left( {} \right)_{comp} \) :

x or y component

\( \left( {} \right)_{o} \) :

Related to ambient

\( \left( {} \right)_{os} \) :

Related to oscillating plate

\( \left( {} \right)_{ref} \) :

Reference for non-dimensionalization

\( \left( {} \right)_{s} \) :

Related to solid

\( \nabla \) :

Del operator

References

  1. Hung TC, Fu CS (1999) Conjugate heat transfer analysis for the passive enhancement of electronic cooling through geometric modification in a mixed convection domain. Numer Heat Transf Int J Comput Methodol A: Appl 35:519–535

    Article  Google Scholar 

  2. Sathe S (1998) A review of recent developments in some practical aspects of air-cooled electronic packages. J Heat Transf 120:830–838

    Article  Google Scholar 

  3. Incropera FP (1988) Future research directions. In: Aung W (ed) Cooling technology for electronic equipment. Hemisphere Publishing Corporation, New York, pp 800–821

    Google Scholar 

  4. Incropera FP (1999) Liquid cooling of electronic devices. Wiley, New York, pp 1–14

    Google Scholar 

  5. VH Adams, Joshi Y, Blackburn DL (1999) Three dimensional study of combined conduction, radiation, and natural convection from discrete heat sources in a horizontal narrow-aspect-ratio enclosure. J Heat Transf 121:992–1001

    Article  Google Scholar 

  6. Viswanath R (2000) Thermal performance challenges from silicon to systems. Intel J Q3, www.intel.com. Accessed 24 Nov 2000

  7. Tou SKW, Tso CP, Zhang X (1999) 3-d numerical analysis of natural convective liquid cooling of a 3 × 3 heater array in rectangular enclosures. Int J Heat Mass Transf 42:3231–3244

    Article  MATH  Google Scholar 

  8. Acikalin T, Wait SM, Garimella SV, Raman A (2004) Experimental investigation of the thermal performance of piezoelectric fans. Heat Transf Eng 25:4–14

    Article  Google Scholar 

  9. Kruusing A et al (2000) Heat transfer enhancement at solid-liquid and solid-gas interfaces by near surface cooling agitation. IEEE Trans Compon Packag Technol 23:548–554

    Article  Google Scholar 

  10. Burmann P, Raman A, Garimella S (2003) Dynamics and topology optimization of piezoelectric fans. IEEE Trans Compon Packag Technol 24:592–600

    Google Scholar 

  11. Yoo JH, Hong JI, Cao W (2000) Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices. Sens Actuators A Phys 79:8–12

    Article  Google Scholar 

  12. Yeh LT (1995) Review of heat transfer technologies in electronic equipment. J Electron Packag Trans ASME 117:333–337

    Article  Google Scholar 

  13. Simons RE (1995) The evolution of IBM high performance cooling technology. IEEE Trans Compon Packag Manuf Technol A 118:805–811

    Article  Google Scholar 

  14. Go JS (2003) Design of a microfilm array heat sink using flow-induced vibrations to enhance the heat transfer in the laminar flow regime. Sens Actuators A Phys 105:201–210

    Article  Google Scholar 

  15. Kimber M, Garimella S (2009a) Measurement and prediction of the cooling characteristics of a generalized vibrating piezoelectric fan. Int J Heat Mass Transf 52:4470–4478

    Google Scholar 

  16. Kimber M, Garimella S (2009b) Cooling performance of arrays of vibrating cantilevers. J Heat Transf 131:111401-1-8

    Google Scholar 

  17. Kimber M, Garimella S (2009) Pressure and flow rate performance of piezoelectric fans. IEEE Trans Compon Packag 32:755–766

    Google Scholar 

  18. Florio LA (2005) Static and dynamic methods of enhancing pure natural convection cooling of electronics. Ph.D. Thesis, New Jersey Institute of Technology, Newark, NJ. http://proquest.umi.com/pqdweb?did=982819661&sid=1&Fmt=2&clientId=4651&RQT=309&VName=PQD

  19. Kim SH, Anand NK (2000) Use of slots to enhance forced convective cooling between channels with surface-mounted heat sources. Numer Heat Transf Int J Comput Methodol A: Appl 38:1–21

    Article  Google Scholar 

  20. Hung TC, Wang SK, Tsai FP (1997) Simulations of passively enhanced conjugate heat transfer across an array of volumetric heat sources. Comm Numer Meth Eng 13:855–866

    Article  MATH  Google Scholar 

  21. Hung TC (2001) A conceptual design of thermal modeling for efficiently cooling an array of heated devices under low Reynolds numbers. Numer Heat Transf Int J Comput Methodol A: Appl 39:361–382

    Article  Google Scholar 

  22. Florio LA, Harnoy A (2006) Analysis of natural convection enhancement in electronics by cross-flow passages. Int J Heat Technol 24:41–50

    Google Scholar 

  23. Fu W-S, Tong B-H (2002) Numerical investigation of heat transfer from a heated oscillating cylinder in cross-flow. Int J Heat Mass Transf 45:3033–3043

    Article  MATH  Google Scholar 

  24. Fu W-S, Tong B-H (2003) Numerical investigation of heat transfer of a heated channel with an oscillating cylinder. Numer Heat Transf Int J Comput Methodol A: Appl 43:639–658

    Article  Google Scholar 

  25. Fu W-S, Tong B-H (2003) Effects of eccentricity of cylinder and blockage ratio on heat transfer by an oscillating cylinder in channel flow. Int Comm Heat Mass Transf 30:401–412

    Article  Google Scholar 

  26. Fu W-S, Tong B-H (2004) Numerical investigation of heat transfer characteristics with transversely oscillating cylinder. Int J Heat Mass Transf 47:341–351

    Article  MATH  Google Scholar 

  27. Yang S-J (2002) A numerical investigation of heat transfer enhancement for electronic devices using an oscillating vortex generator. Numer Heat Transf Int J Comput Methodol A: Appl 42:269–284

    Google Scholar 

  28. Khaled ARA, Vafai K (2002) Nonisothermal characterization of thin film oscillating bearings. Numer Heat Transf Int J Comput Methodol A: Appl 41:451–467

    Article  Google Scholar 

  29. Khaled ARA, Vafai K (2003) Analysis of flow and heat transfer inside oscillatory squeezed thin films subject to a varying clearance. Int J Heat Mass Transf 46:631–641

    Article  MATH  Google Scholar 

  30. Schmidt RR (1994) Local and average transfer coefficients on a vertical surface due to convection from a piezoelectric fan. Paper presented at the intersociety conference on thermal phenomena

  31. Florio LA, Harnoy A (2005) Feasibility study of unconventional cooling of electronic components by vibrating plates at close proximity. Numer Heat Transf Int J Comput Methodol A: Appl 47:997–1024

    Article  Google Scholar 

  32. Florio LA, Harnoy A (2006) Analysis of dynamic enhancement of natural convection cooling in electronics by a discrete vibrating plate. Heat Mass Transf 43:149–163

    Article  Google Scholar 

  33. Florio LA, Harnoy A (2007) Use of a vibrating plate to enhance natural convection cooling of a discrete heat source in a vertical channel. Appl Therm Eng 27:2276–2293

    Article  Google Scholar 

  34. Florio LA, Harnoy A (2007) Augmenting natural convection in a vertical flow path through transverse vibrations of an adiabatic wall. Numer Heat Transf Int J Comput Methodol A: Appl 52:497–530

    Article  Google Scholar 

  35. Radakovic DJ, Khonsari MM (1997) Heat transfer in a thin film flow in the presence of a squeeze and shear thinning: application to piston rings. J Heat Trans 119:249–257

    Article  Google Scholar 

  36. Fidap User’s Manual. Retrieved 15 Aug 2001 from the World Wide Web: www.cae.wisc.edu/manuals/fluent5.2/fidap

  37. Aung W (1972) Fully developed laminar free convection between vertical plates heated asymmetrically. Int J Heat Mass Transf 15:1577–1580

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Florio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florio, L.A., Harnoy, A. Natural convection enhancement by a discrete vibrating plate and a cross-flow opening: a numerical investigation. Heat Mass Transfer 47, 655–677 (2011). https://doi.org/10.1007/s00231-010-0755-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0755-7

Keywords

Navigation