Skip to main content
Log in

Comparative phylogeography of widespread and endemic damselfishes in the Hawaiian Archipelago

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The Hawaiian Archipelago, one of the most remote archipelagoes in the world, is a hotspot for reef fish endemism. The restricted biogeographic range sizes of endemic species have been interpreted to indicate low dispersal ability, whereas broad distributions of widespread species are assumed to indicate high dispersal potential. To assess that intuitive link, we analyzed mitochondrial cytochrome b and control region sequence data for two widespread damselfish species (Abudefduf vaigiensis and Chromis vanderbilti) across the Hawaiian Archipelago and broader Indo-Pacific and compared with three Hawaiian endemic damselfishes (A. abdominalis, C. ovalis, and C. verater). The widespread species exhibited less population structure in the Hawaiian Archipelago than the endemics. Across the larger spatial scale of their Indo-Pacific ranges, both widespread damselfish species showed strong and significant population structure. Our comparison of widespread and endemic damselfish species is consistent with the expected trend for widespread species to exhibit more connectivity within the Hawaiian Archipelago, but this pattern may be restricted to certain reef fish families. In addition, widespread species in this study and previous studies, which had little to no population subdivision within archipelagoes, have shown strong genetic structure when analyzed across the broader Indo-Pacific. We conclude that geographic range size may be a better indicator of dispersal ability at smaller (within archipelago) rather than at larger spatial scales (across oceans). Management should note that reef fishes unique to Hawaii seem to have less gene flow across the archipelago than more broadly distributed Indo-Pacific species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Photo credit: Keoki Stender, http://www.marinelifephotography.com/

Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahti PA, Coleman RR, DiBattista JD, Berumen ML, Rocha LA, Bowen BW (2016) Phylogeography of Indo-Pacific reef fishes: sister wrasses Coris gaimard and C. cuvieri in the Red Sea, Indian Ocean and Pacific Ocean. J Biogeogr 43:1103–1115

    Article  Google Scholar 

  • Allen GR (1991) Damselfishes of the world. Mergus; Aquarium Systems, Melle, Mentor

    Google Scholar 

  • Allen GR (2008) Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes. Aquat Conserv 18:541–556

    Article  Google Scholar 

  • Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744. https://doi.org/10.1126/science.1140597

    Article  PubMed  CAS  Google Scholar 

  • Andrews KR, Moriwake VN, Wilcox C, Grau EG, Kelley C, Pyle RL, Bowen BW (2014) Phylogeographic analyses of submesophotic snappers Etelis coruscans and Etelismarshi” (family Lutjanidae) reveal concordant genetic structure across the Hawaiian Archipelago. PLoS One 9:e91665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773

    PubMed  PubMed Central  CAS  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bernardi G, Ramon M, Alva-Campbell Y, McCosker JE, Bucciarelli G, Garske LE, Victor BC, Crane NL (2014) Darwin’s fishes: phylogeography of Galapagos Islands reef fishes. Bull Mar Sci 90:533–549

    Article  Google Scholar 

  • Bertrand JAM, Borsa P, Chen W-J (2017) Phylogeography of the sergeants Abudefduf sexfasciatus and A. vaigiensis reveals complex introgression patterns between two widespread and sympatric Indo-West Pacific reef fishes. Mol Ecol 26:2527–2542

    Article  PubMed  CAS  Google Scholar 

  • Bowen BW (2016) The three domains of conservation genetics: case histories from Hawaiian waters. J Hered 107:309–317. https://doi.org/10.1093/jhered/esw018

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowen BW, Bass AL, Rocha LA, Grant WS, Robertson DR (2001) Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution 55:1029–1039

    Article  PubMed  CAS  Google Scholar 

  • Bowen BW, Gaither MR, DiBattista JD, Iacchei M, Andrews KR, Grant WS, Toonen RJ, Briggs JC (2016) Comparative phylogeography of the ocean planet. Proc Natl Acad Sci USA 113:7962–7969. https://doi.org/10.1073/pnas.1602404113

    Article  PubMed  CAS  Google Scholar 

  • Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39:12–30

    Article  Google Scholar 

  • Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27:477–500

    Article  Google Scholar 

  • Carlton JT, Eldredge LG, Bernice Pauahi Bishop M (2009) Marine bioinvasions of Hawaii: the introduced and cryptogenic marine and estuarine animals and plants of the Hawaiian Archipelago. Bernice P. Bishop Museum/Bishop Museum Press, Honolulu

    Google Scholar 

  • Christie MR, Johnson DW, Stallings CD, Hixon MA (2010) Self-recruitment and sweepstakes reproduction amid extensive gene flow in a coral-reef fish. Mol Ecol 19:1042–1057. https://doi.org/10.1111/j.1365-294X.2010.04524.x

    Article  PubMed  Google Scholar 

  • Coleman RR, Gaither MR, Kimokeo B, Stanton FG, Bowen BW, Toonen RJ (2014) Large-scale introduction of the Indo-Pacific damselfish Abudefduf vaigiensis into Hawaii promotes genetic swamping of the endemic congener A. abdominalis. Mol Ecol 23:5552–5565

    Article  PubMed  Google Scholar 

  • Coleman RR, Eble JA, DiBattista JD, Rocha LA, Randall JE, Berumen ML, Bowen BW (2016) Regal phylogeography: range-wide survey of the marine angelfish Pygoplites diacanthus reveals evolutionary partitions between the Red Sea, Indian Ocean, and Pacific Ocean. Mol Phylogenet Evol 100:243–253. https://doi.org/10.1016/j.ympev.2016.04.005

    Article  PubMed  Google Scholar 

  • Craig MT, Eble JA, Bowen BW, Robertson DR (2007) High genetic connectivity across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae). Mar Ecol Prog Ser 334:245–254

    Article  CAS  Google Scholar 

  • Delrieu-Trottin E, Maynard J, Planes S (2014) Endemic and widespread coral reef fishes have similar mitochondrial genetic diversity. Proc R Soc B Biol Sci 281:20141068. https://doi.org/10.1098/rspb.2014.1068

    Article  Google Scholar 

  • DiBattista JD, Wilcox C, Craig MT, Rocha LA, Bowen BW (2011) Phylogeography of the Pacific Blueline Surgeonfish, Acanthurus nigroris, reveals high genetic connectivity and a cryptic endemic species in the Hawaiian Archipelago. J Mar Biol 2011:17. https://doi.org/10.1155/2011/839134

    Article  Google Scholar 

  • Doherty PJ, Planes S, Mather P (1995) Gene flow and larval duration in seven species of fish from the Great Barrier Reef. Ecology 76:2373–2391

    Article  Google Scholar 

  • Dohna TA, Timm J, Hamid L, Kochzius M (2015) Limited connectivity and a phylogeographic break characterize populations of the pink anemonefish, Amphiprion perideraion, in the Indo-Malay Archipelago: inferences from a mitochondrial and microsatellite loci. Ecol Evol 5:1717–1733

    Article  PubMed  PubMed Central  Google Scholar 

  • Eble JA, Toonen RJ, Bowen BW (2009) Endemism and dispersal: comparative phylogeography of three surgeonfish species across the Hawaiian Archipelago. J Mar Biol 156:689–698

    Article  Google Scholar 

  • Eble JA, Sorenson LS, Papastamatiou YP, Basch L, Toonen RJ, Bowen BW (2011) Escaping paradise: larval export from Hawaii in an Indo-Pacific reef fish, the yellow tang. Mar Ecol Prog Ser 428:245–258. https://doi.org/10.3354/meps09083

    Article  PubMed  PubMed Central  Google Scholar 

  • Ersts P (2014) Geographic distance matrix generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation, New York

    Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Fernandez-Silva I, Randall JE, Coleman RR, DiBattista JD, Rocha LA, Reimer JD, Meyer CG, Bowen BW (2015) Yellow tails in the Red Sea: phylogeography of the Indo-Pacific goatfish Mulloidichthys flavolineatus reveals isolation in peripheral provinces and cryptic evolutionary lineages. J Biogeogr 42:2402–2413

    Article  Google Scholar 

  • Fowler HW (1941) The fishes of the groups Elasmobranchii, Holocephali, Isospondyli, and Ostarophysi[sic] obtained by the United States Bureau of fisheries steamer “Albatross” in 1907 to 1910, chiefly in the Philippine islands and adjacent seas. U.S. Govt. Print. Off, Washington

    Google Scholar 

  • Friedlander AM, Donovan MK, Stamoulis KA, Williams ID, Brown EK, Conklin EJ, DeMartini EE, Rodgers KS, Sparks RT, Walsh WJ (2018) Human-induced gradients of reef fish declines in the Hawaiian Archipelago viewed through the lens of traditional management boundaries. Aquat Conserv: Mar Freshw Ecosyst 28:146–157. https://doi.org/10.1002/aqc.2832

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gaither MR, Bowen BW, Toonen RJ, Planes S, Messmer V, Earle J, Robertson DR (2010) Genetic consequences of introducing allopatric lineages of Bluestriped Snapper (Lutjanus kasmira) to Hawaii. Mol Ecol 19:1107–1121. https://doi.org/10.1111/j.1365-294X.2010.04535.x

    Article  PubMed  Google Scholar 

  • Gaither MR, Bowen BW, Bordenave T-R, Rocha LA, Newman SJ, Gomez JA, van Herwerden L, Craig MT (2011a) Phylogeography of the reef fish Cephalopholis argus (Epinephelidae) indicates Pleistocene isolation across the Indo-Pacific barrier with contemporary overlap in the coral triangle. BMC Evol Biol 11:189–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaither MR, Jones SA, Kelley C, Newman SJ, Sorenson L, Bowen BW (2011b) High connectivity in the deepwater snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-Pacific with isolation of the Hawaiian Archipelago. PLoS One 6:e28913. https://doi.org/10.1371/journal.pone.0028913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. https://doi.org/10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  • Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR, Feldheim KA, van Herwerden L, Planes S, Srinivasan M, Berumen ML, Jones GP (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22:1023–1028. https://doi.org/10.1016/j.cub.2012.04.008

    Article  PubMed  CAS  Google Scholar 

  • Hawkins JP, Roberts CM, Clark V (2000) The threatened status of restricted-range coral reef fish species. Anim Conserv 3:81–88

    Article  Google Scholar 

  • Hellberg ME, Burton RS, Neigel JE, Palumbi SR (2002) Genetic assessment of connectivity among marine populations. Bull Mar Sci 70:273–290

    Google Scholar 

  • Hourigan TF, Reese ES (1987) Mid-ocean isolation and the evolution of Hawaiian reef fishes. Trends Ecol Evol 2:187–191

    Article  PubMed  CAS  Google Scholar 

  • Hughes TP, Bellwood DR, Connolly SR (2002) Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecol Lett 5:775–784

    Article  Google Scholar 

  • Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318. https://doi.org/10.1016/j.cub.2005.06.061

    Article  PubMed  CAS  Google Scholar 

  • Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, van Oppen MJH, Willis BL (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307–325. https://doi.org/10.1007/s00338-009-0469-9

    Article  Google Scholar 

  • Kay EA, Palumbi SR (1987) Endemism and evolution in Hawaiian marine invertebrates. Trends Ecol Evol 2:183–186

    Article  Google Scholar 

  • Leray M, Beldade R, Holbrook SJ, Schmitt RJ, Planes S, Bernardi G (2010) Allopatric divergence and speciation in coral reef fish: the three-spot Dascyllus, Dascyllus trimaculatus, species complex. Evolution 64:1218–1230. https://doi.org/10.1111/j.1558-5646.2009.00917.x

    Article  PubMed  Google Scholar 

  • Lerner HRL, Meyer M, James HF, Hofreiter M, Fleischer RC (2011) Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr Biol 21:1838–1844. https://doi.org/10.1016/j.cub.2011.09.039

    Article  PubMed  CAS  Google Scholar 

  • Lester SE, Ruttenberg BI (2005) The relationship between pelagic larval duration and range size in tropical reef fishes: a synthetic analysis. Proc R Soc B Biol Sci 272:585–591. https://doi.org/10.1098/rspb.2004.2985

    Article  Google Scholar 

  • Lester SE, Ruttenberg BI, Gaines SD, Kinlan BP (2007) The relationship between dispersal ability and geographic range size. Ecol Lett 10:745–758. https://doi.org/10.1111/j.1461-0248.2007.01070.x

    Article  PubMed  Google Scholar 

  • Luiz OJ, Allen AP, Robertson DR, Floeter SR, Kulbicki M, Vigliola L, Becheler R, Madin JS (2013) Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc Natl Acad Sci USA 110:16498–16502. https://doi.org/10.1073/pnas.1304074110

    Article  PubMed  Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190. https://doi.org/10.1353/hub.2004.0034

    Article  PubMed  Google Scholar 

  • Maruska KP, Peyton KA (2007) Interspecific spawning between a recent immigrant and an endemic damselfish (Pisces: Pomacentridae) in the Hawaiian Islands. Pac Sci 61:211–221

    Article  Google Scholar 

  • Mora C, Robertson DR (2005) Factors shaping the range-size frequency distribution of the endemic fish fauna of the Tropical Eastern Pacific. J Biogeogr 32:277–286. https://doi.org/10.1111/j.1365-2699.2004.01155.x

    Article  Google Scholar 

  • Mora C, Treml EA, Roberts J, Crosby K, Roy D, Tittensor DP (2012) High connectivity among habitats precludes the relationship between dispersal and range size in tropical reef fishes. Ecography 35:89–96

    Article  Google Scholar 

  • Mundy BC (2005) Checklist of the fishes of the Hawaiian archipelago. Bishop Museum Press, Honolulu

    Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) Vegan: community ecology package. R package version 2.0–10

  • Palumbi SR (1994) Genetic-divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  • Paradis E (2010) Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420. https://doi.org/10.1093/bioinformatics/btp696

    Article  PubMed  CAS  Google Scholar 

  • Planes S, Fauvelot C (2002) Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56:378–399

    Article  PubMed  CAS  Google Scholar 

  • Planes S, Doherty PJ, Bernardi G (2001) Strong genetic divergence among populations of a marine fish with limited dispersal, Acanthochromis polyacanthus, within the Great Barrier Reef and the Coral Sea. Evol 55:2263–2273

    Article  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Quoy J-R-C, Paul GJ (1825) Remarques sur quelques poissons de mer, et sur leur distribution géographique. Béchet Jeune, Paris

    Google Scholar 

  • Ramon ML, Nelson PA, De Martini E, Walsh WJ, Bernardi G (2008) Phylogeography, historical demography, and the role of post-settlement ecology in two Hawaiian damselfish species. Mar Bio 153:1207–1217. https://doi.org/10.1007/s00227-007-0894-7

    Article  Google Scholar 

  • Randall JE (1998) Shore fishes of Hawai’i. University of Hawai’i Press, Honolulu

    Google Scholar 

  • Reece JS, Bowen BW, Joshi K, Goz V, Larson A (2010) Phylogeography of two moray eels indicates high dispersal throughout the Indo-Pacific. J Hered 101:391–402. https://doi.org/10.1093/jhered/esq036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reece JS, Bowen BW, Smith DG, Larson A (2011) Comparative phylogeography of four Indo-Pacific moray eel species (Muraenidae) reveals comparable ocean-wide genetic connectivity despite five-fold differences in available adult habitat. Mar Ecol Prog Ser 437:269–277. https://doi.org/10.3354/meps09248

    Article  Google Scholar 

  • Roberts CM, Andelman S, Branch G, Bustamante RH, Castilla JC, Dugan J, Halpern BS, Lafferty KD, Leslie H, Lubchenco J, McArdle D, Possingham HP, Ruckelshaus M, Warner RR (2003) Ecological criteria for evaluating candidate sites for marine reserves. Ecol Appl 13:S199–S214

    Article  Google Scholar 

  • Schultz JK, Pyle RL, DeMartini E, Bowen BW (2007) Genetic connectivity among color morphs and Pacific archipelagos for the flame angelfish, Centropyge loriculus. Mar Biol 151:167–175. https://doi.org/10.1007/s00227-006-0471-5

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ (2011) Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar Ecol Prog Ser 436:291–305. https://doi.org/10.3354/meps09238

    Article  Google Scholar 

  • Selkoe KA, Gaggiotti OE, Bowen BW, Toonen RJ (2014) Emergent patterns of population genetic structure for a coral reef community. Mol Ecol 23:3064–3079. https://doi.org/10.1111/mec.12804

    Article  PubMed  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90. https://doi.org/10.1139/z91-013

    Article  CAS  Google Scholar 

  • Shanks AL, Grantham BA, Carr MH (2003) Propagule dispersal distance and the size and spacing of marine reserves. Ecol Appl 13:S159–S169

    Article  Google Scholar 

  • Shaw KL, Gillespie RG (2016) Comparative phylogeography of oceanic archipelagos: hotspots for inferences of evolutionary process. Proc Natl Acad Sci USA 113:7986–7993. https://doi.org/10.1073/pnas.1601078113

    Article  PubMed  CAS  Google Scholar 

  • Shulman MJ (1998) What can population genetics tell us about dispersal and biogeographic history of coral-reef fishes? Aust J Ecol 23:216–225

    Article  Google Scholar 

  • Springer VG (1982) Pacific plate biogeography, with special reference to shorefishes. Smithsonian Institution, Washington, DC

    Book  Google Scholar 

  • Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KA, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal marine populations. Bull Mar Sci 70:251–271

    Google Scholar 

  • Swerdloff SN (1970) The comparative biology of two Hawaiian species of the damselfish genus Chromis (Pomacentridae). Dissertation, University of Hawaii

  • Szabó Z, Snelgrove B, Craig MT, Rocha LA, Bowen BW (2014) Phylogeography of the manybar goatfish, Parupeneus multifasciatus, reveals isolation of the Hawaiian Archipelago and a cryptic species in the Marquesas Islands. Bull Mar Sci 90:493–512

    Article  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tenggardjaja KA, Bowen BW, Bernardi G (2014) Vertical and horizontal genetic connectivity in Chromis verater, an endemic damselfish found on shallow and mesophotic reefs in the Hawaiian Archipelago and adjacent Johnston Atoll. PLoS One 9:e115493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tenggardjaja KA, Bowen BW, Bernardi G (2016) Reef fish dispersal in the Hawaiian Archipelago: comparative phylogeography of three endemic damselfishes. J Mar Biol 2016:17. https://doi.org/10.1155/2016/3251814

    Article  Google Scholar 

  • Toonen RJ, Andrews KR, Baums IB, Bird CE, Concepcion GT, Daly-Engel TS, Eble JA, Faucci A, Gaither MR, Iacchei M, Puritz JB, Schultz JK, Skillings DJ, Timmers MA, Bowen BW (2011) Defining boundaries for ecosystem-based management: a multispecies case study of marine connectivity across the Hawaiian Archipelago. J Mar Biol. https://doi.org/10.1155/2011/460173

    Article  PubMed  PubMed Central  Google Scholar 

  • Treml EA, Possingham HP, Riginos C, Roberts JJ, Halpin PN, Chao Y (2012) Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integr Comp Biol 52:525–537

    Article  PubMed  Google Scholar 

  • Vagelli A, Burford M, Bernardi G (2008) Fine scale dispersal in Banggai Cardinalfish, Pterapogon kaudemi, a coral reef species lacking a pelagic larval phase. Mar Genom 1:129–134. https://doi.org/10.1016/j.margen.2009.01.001

    Article  Google Scholar 

  • Wagner WL, Funk VA (1995) Hawaiian biogeography: evolution on a hot spot archipelago. Smithsonian Institution Press, Washington

    Google Scholar 

  • Waldrop E, Hobbs J-PA, Randall JE, DiBattista JD, Rocha LA, Kosaki RK, Berumen ML, Bowen BW (2016) Phylogeography, population structure and evolution of coral-eating butterflyfishes (Family Chaetodontidae, genus Chaetodon, subgenus Corallochaetodon). J Biogeogr 43:1116–1129

    Article  Google Scholar 

  • Wellington GM, Victor BC (1989) Planktonic larval duration of 100 species of Pacific and Atlantic Damselfishes (Pomacentridae). Mar Biol 101:557–567

    Article  Google Scholar 

Download references

Acknowledgements

For assistance with specimen collections, we thank Senifa Annandale, Richard Coleman, Joshua Copus, Joseph DiBattista, Joshua Drew, Michelle Gaither, Alexis Jackson, Shelley Jones, Corinne Kane, Stephen Karl, Beth Kimokeo, Randall Kosaki, Jason Leonard, Ken Longenecker, Gary Longo, Keolohilani Lopes, Yannis Papastamatiou, David Pence, Richard Pyle, Joshua Reece, Matt Ross, Mark Royer, Trisha Soares, Frank Stanton, Zoltan Szabo, Tonatiuh Trejo-Cantwell, Jackie Troller, Daniel Wagner, Rob Whitton, Chad Wiggins, Christie Wilcox, Yumi Yasutake, and the crew of the R. V. Hi’ialakai. We also thank the Papahānaumokuākea Marine National Monument and Robert J. Toonen for logistic support; Ed DeMartini for valuable guidance and suggestions; Jimmy O’Donnell for time-saving R scripts; Lisa Chen, Millicent Lu, and Victor Gomez for their assistance in editing the haplotype networks; members of the Bernardi lab and the ToBo lab for intellectual input; and the staff of the DNA sequencing facility at the University of California, Berkeley, for their assistance with DNA sequencing. Thanks to Keoki Stender for donating photographs. Thanks to editor Oscar Puebla and two anonymous reviewers for comments that improved the manuscript. This study arose from fieldwork and lab work supported by the National Oceanic and Atmospheric Administration Dr. Nancy Foster Scholarship, the Raney Fund for Ichthyology, the Lewis and Clark Fund for Exploration and Field Research, Sigma Xi Grants-in-Aid of Research, the American Academy of Underwater Sciences Kathy Johnston Scholarship, the Lerner Gray Memorial Fund, the Myers Trust, and the Friends of the Long Marine Lab (Kimberly A. Tenggardjaja). In addition, this study was supported by the National Science Foundation Grant Nos. OCE-0453167 (Brian W. Bowen) and OCE-0929031 (Brian W. Bowen), NOAA National Marine Sanctuaries Program MOA Grant No. 2005-008/66882 (Robert J. Toonen), and Hawai‘i Sea Grant No. NA05OAR4171048 (Brian W. Bowen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly A. Tenggardjaja.

Ethics declarations

Human and animal rights statement

All applicable international, national, and institutional guidelines for the use of animals were followed. Collecting permits were provided by the Papahānaumokuākea Marine National Monument and the State of Hawaii Division of Aquatic Resources.

Conflict of interest

The authors declare that they have no conflict of interest pertaining to this study.

Additional information

Responsible Editor: O. Puebla.

Reviewed by Undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

227_2018_3395_MOESM1_ESM.pdf

Online Resource 1. Parsimony-based haplotype networks using cytochrome b sequence data and Hawaiian and Johnston Atoll sampling locations for: (a) A. vaigiensis, (b) A. abdominalis, (c) C. vanderbilti, (d) C. ovalis, and (e) C. verater. Each circle represents a haplotype and is proportional to the frequency of that haplotype. Length of branches is proportional to number of mutations. Networks are color-coded by sampling location and are not scaled relative to each other. Network for C. verater originally appeared in Tenggardjaja et al. (2014), and networks for A. abdominalis and C. ovalis originally appeared in Tenggardjaja et al. (2016) (PDF 641 kb)

227_2018_3395_MOESM2_ESM.pdf

Online Resource 2. Parsimony-based haplotype networks using control region sequence data and Hawaiian and Johnston Atoll sampling locations for: (a) A. vaigiensis, (b) A. abdominalis, (c) C. vanderbilti, (d) C. ovalis, and (e) C. verater. Each circle represents a haplotype and is proportional to the frequency of that haplotype. Length of branches is proportional to number of mutations. Networks are color-coded by sampling location and are not scaled relative to each other. Network for C. verater originally appeared in Tenggardjaja et al. (2014), and networks for A. abdominalis and C. ovalis originally appeared in Tenggardjaja et al. (2016)  (PDF 908 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenggardjaja, K.A., Bowen, B.W. & Bernardi, G. Comparative phylogeography of widespread and endemic damselfishes in the Hawaiian Archipelago. Mar Biol 165, 139 (2018). https://doi.org/10.1007/s00227-018-3395-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-018-3395-y

Navigation