Skip to main content
Log in

Phylogeography of two Atlantic squirrelfishes (Family Holocentridae): exploring links between pelagic larval duration and population connectivity

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract:

Genetic surveys of reef fishes have revealed high population connectivity within ocean basins, consistent with the assumption that pelagic larvae disperse long distances by oceanic currents. However, several recent studies have demonstrated that larval retention and self-recruitment may be higher than previously expected. To assess connectivity in tropical reef fishes, we contribute range-wide mtDNA surveys of two Atlantic squirrelfishes (family Holocentridae). The blackbar soldierfish, Myripristis jacobus, has a pelagic juvenile phase of about 58 days, compared to about 71 days (~22% longer) in the longjaw squirrelfish, Holocentrus ascensionis. If the pelagic duration is guiding dispersal ability, M. jacobus should have greater population genetic structure than H. ascensionis. In comparisons of mtDNA cytochrome b sequences from 69 M. jacobus (744 bp) and 101 H. ascensionis (769 bp), both species exhibited a large number of closely related haplotypes (h=0.781 and 0.974, π=0.003 and 0.006, respectively), indicating late Pleistocene coalescence of mtDNA lineages. Contrary to the prediction based on pelagic duration, M. jacobus has much less population structure (φST=0.008, P=0.228) than H. ascensionisST=0.091, P<0.001). Significant population partitions in H. ascensionis were observed between eastern, central and western Atlantic, and between Brazil and the Caribbean in the western Atlantic. These results, in combination with the findings from 13 codistributed species, indicate that pelagic larval duration is a poor predictor of population genetic structure in Atlantic reef fishes. A key to understanding this disparity may be the evolutionary depth among corresponding taxonomic groups of “reef fishes”, which extends back to the mid-Cretaceous and encompasses enormous diversity in ecology and life history. We should not expect a simple relationship between pelagic larval duration and genetic connectivity, among lineages that diverged 50–100 million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amos B, Hoelzel AR (1991) Long-term preservation of whale skin for DNA analysis. Rep Int Whal Comm Spec Iss 13:99–103

    Google Scholar 

  • Avise JC, Neigel JE, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20:99–105

    Article  PubMed  CAS  Google Scholar 

  • Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2002) Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences. Mol Ecol 11:659–674

    Article  PubMed  CAS  Google Scholar 

  • Bay LK, Choat JH, van Herwerden L, Robertson DR (2004) High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past? Mar Biol 144:377–383

    Article  CAS  Google Scholar 

  • Bay LK, Crozier RH, Caley MJ (2006) The relationship between population genetic structure and pelagic larval duration in coral reef fishes on the Great Barrier Reef. Marine Biology (in press)

  • Bellwood DR, Fisher R (2001) Relative swimming speeds in reef fish larvae. Mar Ecol Prog Ser 211:299–303

    Google Scholar 

  • Bellwood DR, Wainwright PC (2002) The history and biogeography of fishes on coral reefs. In: Sale PF (ed) Coral reef fishes; dynamics and diversity on a complex ecosystem. Academic, New York, pp 5–32

    Google Scholar 

  • Bergenius MAJ, Meekan MG, Robertson DR, McCormick MI (2002) Larval growth predicts recruitment success of a coral reef fish. Oecologia 131:521–525

    Article  Google Scholar 

  • Berggren WA, Hollister CD (1974) Paleogeography, paleobiogeography, and the history of circulation in the Atlantic Ocean. In: Studies in Paleo-Oceanography. Society of Economic Paleontology and Mineralogy Spec Pub 20:126–186

  • Bermingham E, McCafferty SS, Martin AP (1997) Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. Academic, San Diego, pp 113–128

    Google Scholar 

  • Bernardi G, Robertson DR, Clifton KE, Azzurro E (2000) Molecular systematics, zoogeography, and evolutionary ecology of the Atlantic parrotfish Sparisoma. Mol Phylogenet Evol 15:292–300

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G, Holbrook SJ, Schmitt RJ (2001) Gene flow at three spatial scales in a coral reef fish, the three-spot dascyllus, Dascyllus trimaculatus. Mar Biol 138:457–465

    Article  CAS  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Quart Rev Biol 74:21–45

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme F, Planes S (2000) Some evolutionary arguments about what maintains the pelagic interval in reef fishes. Env Biol Fishes 59:365–383

    Article  Google Scholar 

  • Bowen BW, Bass AL, Rocha LA, Grant WS. Robertson DR (2001) Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution 55:1029–1039

    PubMed  CAS  Google Scholar 

  • Bowen BW, Muss A, Rocha LA, Grant WS (2006) Shallow mtDNA coalescence in Atlantic pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean. J Hered 97:1–12

    Article  PubMed  CAS  Google Scholar 

  • Briggs JC (1974) Marine zoogoegraphy. McGraw-Hill, New York

    Google Scholar 

  • Briggs JC (1995) Global biogeography. Elsevier, Amesterdam

    Google Scholar 

  • Brothers EB, Thresher RE (1985) Pelagic duration, dispersal, and the distribution of Indo-Pacific coral reef fishes. In: Reaka ML (eds) The ecology of deep and shallow coral reefs. NOAA Special Publications, Rockville, pp 53–69

    Google Scholar 

  • Carlin JL, Robertson DR, Bowen BW (2003) Ancient divergences and recent connections in two tropical Atlantic reef fishes Epinephelus adscensionis and Rypticus saponaceous (Percoidei: Serranidae). Mar Biol 143:1057–1069

    Article  Google Scholar 

  • Chenoweth S, Hughes J, Connolly R (2002) Phylogeography of the pipefish, Urocampus carinirostris, suggests secondary intergradation of ancient lineages. Mar Biol 141:541–547

    Article  Google Scholar 

  • Chesher RH (1966) The R/V Pillsbury deep-sea biological expedition to the Gulf of Guinea, 1964–1965, 10: report on the Echinoidea collected by the R/V Pillsbury in the Gulf of Guinea. Stud Trop Oceanogr 4:209–223

    Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genalogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Collette BB, Rützler K (1977) Reef fishes over sponge bottoms off the mouth of the Amazon River. In: Proceedings, third international coral reef symposium. University of Miami Press, Miami, pp 305–309

  • Craig MT, Hastings PA, Pondarella DJ II, Robertson DR, and Rosales-Casian JA (2006) Phylogeography of the flag cabrilla, Epinephelus labriformis (Serranidae): implications for the biogeography of the tropical eastern Pacific and the early stages of speciation in a marine shore fish. J Biogeogr (in press)

  • Crisp DJ (1978) Genetic consequences of different reproductive strategies in marine invertebrates. In: Battaglia B, Beadmore JA (eds) Marine organisms: genetics, ecology and evolution. Plenum, New York, pp 257–273

    Google Scholar 

  • Daly RA (1915) The glacial-control theory of coral reefs. Proc Amer Acad Arts Sci 51:155–251

    Google Scholar 

  • Dawson MN, Louie KD, Barlow M, Jacobs DK, Swift CC (2002) Comparative phylogeography of sympatric sister species, Clevelandia ios and Eucyclogobius newberryi (Teleostei, Gobiidae), across the California transition zone. Mol Ecol 11:1065–1075

    Article  PubMed  CAS  Google Scholar 

  • Doherty PJ, Mather P, Planes S (1994) Acanthochromis polyacanthus, a fish lacking larval dispersal, has genetically differentiated populations at local and regional scales on the Great Barrier Reef. Mar Biol 121:11–21

    Article  Google Scholar 

  • Doherty PJ, Planes S, Mather P (1995) Gene flow and larval duration in seven species of fish from the Great Barrier Reef. Ecology 76:2373–2391

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Floeter SR, Gasparini JL (2000) The southwestern Atlantic reef fish fauna: composition and zoogeographic patterns. J Fish Biol 56:1099–1114

    Article  Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  • Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426

    Article  Google Scholar 

  • Greenfield DW (1968) The zoogeography of Myripristis (Pisces: Holocentridae). Syst Zool 17:76–87

    Article  Google Scholar 

  • Greenfield DW (1974) A revision of the squirrelfish genus Myripristis Cuvier (Pisces: Holocentridae). Nat Hist Mus Los Angeles Co Sci Bull 19:1–54

    Google Scholar 

  • Harpending RC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    PubMed  CAS  Google Scholar 

  • Hedgecock D, 1994. Does variance in reproductive success limit effective population sizes of marine organisms? In: Beaumont A (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 122–134

    Google Scholar 

  • Hedgecock D, Tracey ML, Nelson K (1982) Genetics. In: Abele LG (eds) The biology of Crustacea, vol 2. Academic, New York, pp 297–403

  • Hoffman EA, Kolm N, Berglund A, Arguello R, Jones AG (2005) Genetic structure in the coral-reef-associated Banggai cardinalfish, Pterapogon kauderni. Mol Ecol 14:1367–1375

    Article  PubMed  CAS  Google Scholar 

  • Hourigan TF, Reese ES (1987) Mid-ocean isolation and the evolution of Hawaiian reef fishes. TREE 2:187–191

    Google Scholar 

  • Irisson J-O, LeVan A, de Lara M, Planes S (2004) Strategies and trajectories of coral reef fish larvae optimizing self-recruitment. J Theor Biol 227:205–218

    Article  PubMed  Google Scholar 

  • Jones AG, Moore GI, Kvarnemo C, Walker D, Avise JC (2003) Sympatric speciation as a consequence of male pregnancy in seahorses. Proc Natl Acad Sci USA 100:6598–6603

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals—amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  PubMed  CAS  Google Scholar 

  • Lecomte FL, Grant WS, Dodson JJ, Rodriguez-Sanchez R, Bowen BW (2004) Living with uncertainty: genetic imprints of climate shifts in East Pacific anchovy (Engraulis mordax) and sardine (Sardinops sagax). Mol Ecol 13:2169–2182

    Article  PubMed  CAS  Google Scholar 

  • Lehman SJ, Kiegwin LD (1992) Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356:757–762

    Article  Google Scholar 

  • Leis JM (1991) Vertical distribution of fish larvae in the Great Barrier Reef Lagoon, Australia. Mar Biol 109:157–166

    Article  Google Scholar 

  • Leis JM (1993) Larval fish assemblages near Indo-Pacific coral reefs. Bull Mar Sci 53:362–392

    Google Scholar 

  • Leis JM, Carson-Ewart BM (1997) In situ swimming speeds of the late pelagic larvae of some Indo-Pacific coral-reef fishes. Mar Ecol Prog Ser 159:165–174

    Google Scholar 

  • Lima D, Freitas JEP, Araujo ME, Sole-Cava AM (2005) Genetic detection of cryptic species in the frillfin goby Bathygobius soporator. J Exp Mar Biol Ecol 320:211–223

    Article  Google Scholar 

  • Lindeman KC, Lee TN, Wilson WD, Claro R, Ault JS (2000) Transport of larvae originating in southwest Cuba and the Dry Tortugas: evidence for partial retention in grunts and snappers. Proc Gulf Carib Fish Inst 52:253–278

    Google Scholar 

  • Lourie SA, Green DM, Vincent ACJ (2005) Dispersal, habitat differences, and comparative phylogeography of Southeast Asian seahorses (Syngnathidae: Hippocampus). Mol Ecol 14:1073–1094

    Article  PubMed  CAS  Google Scholar 

  • Marko PB (2004) ‘What’s larvae got to do with it?’ Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol Ecol 13:597–611

    Article  PubMed  CAS  Google Scholar 

  • McCartney MA, Acevedo J, Heredia C, Rico C, Quenoville B, Bermingham E, McMillan WO (2003) Genetic mosaic in a marine species flock. Mol Ecol 12:2963–2973

    Article  PubMed  CAS  Google Scholar 

  • McMillan WO, Palumbi SR (1995) Concordant evolutionary patterns among Indo-West Pacific butterflyfishes. P Roy Soc Lond B 260:229–236

    CAS  Google Scholar 

  • Meyer A (1993) Phylogenetic relationships and evolutionary processes in East African cichlid fishes. TREE 8:279–284

    Google Scholar 

  • Mora C, Sale PF (2002) Are populations of coral reef fish open or closed? TREE 17:422–428

    Google Scholar 

  • Muss A, Robertson DR, Stepien CA, Wirtz P, Bowen BW (2001) Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution. Evolution 55:561–572

    PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Planes S (1998) Genetic diversity and dispersal capabilities in marine fish. Evol Biol 30:253–298

    Google Scholar 

  • Planes S (2002) Biogeography and larval dispersal inferred from population genetic analysis. In: Sale PF (ed) Coral reef fishes; dynamics and diversity on a complex ecosystem. Academic, New York, pp 201–220

    Google Scholar 

  • Planes S, Fauvelot C (2002) Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56:378–399

    PubMed  CAS  Google Scholar 

  • Planes S, Lenfant P (2002) Temporal change in the genetic structure between and within cohorts of a marine fish, Diplodus sargus, induced by a large variance in individual reproductive success. Mol Ecol 11:1515–1524

    Article  PubMed  CAS  Google Scholar 

  • Planes S, Parroni M, Chauvet C (1998) Evidence of limited gene flow in three species of coral reef fishes in the lagoon of New Caledonia. Mar Biol 130:361–368

    Article  Google Scholar 

  • Randall JE (1955) Fishes of the Gilbert Islands. Atoll Res Bull 47:1–243

    Google Scholar 

  • Randall JE (1996) Caribbean reef fishes, 3rd edn. T.F.H. Publications, Neptune City, NJ

    Google Scholar 

  • Randall JE, Greenfield DW (1996) Revision of the Indo-Pacific Holocentrid fishes of the genus Myripristis, with description of three new species. Indo-Pacific Fishes No. 25. Bishop Museum, Honolulu, HI

  • Riginos C, Victor BC (2001) Larval spatial distributions and other early life-history characteristics predict genetic differentiation in eastern Pacific blennioid fishes. Proc Roy Soc Lond Ser B 268:1931–1936

    Article  CAS  Google Scholar 

  • Rivera MAJ, Kelley CD, Roderick GK (2004) Subtle population genetic structure in the Hawaiian grouper, Epinephelus quernus (Serranidae) as revealed by mitochondrial DNA analyses. Biol J Linn Soc 81:449–468

    Article  Google Scholar 

  • Roberts CM, Hawkins JP (1999) Extinction risk in the sea. TREE 14:241–246

    PubMed  Google Scholar 

  • Robertson DR (2001) Population maintenance among tropical reef-fishes: inferences from the biology of small-island endemics. Proc Natl Acad Sci USA 98:5668–5670

    Article  Google Scholar 

  • Robertson DR, Grove JS, McCosker JE (2004) Tropical transpacific shorefishes. Pacific Sci 4:507–565

    Article  Google Scholar 

  • Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30:1161–1171

    Article  Google Scholar 

  • Rocha LA (2004) Mitochondrial DNA and color pattern variation in three western Atlantic Halichoeres (Labridae), with the revalidation of two species. Copeia 2004:770–782

    Google Scholar 

  • Rocha LA, Bass AL, Robertson DR, Bowen BW (2002) Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Mol Ecol 11:243–252

    Article  PubMed  CAS  Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW. (2005a) Ecological speciation in tropical reef fishes. Proc Roy Soc Lond Ser B 272:573–579

    Article  Google Scholar 

  • Rocha LA, Robertson DR, Rocha CR, Van Tassell JL, Craig MT, Bowen BW (2005b) Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol Ecol 14:3921–3928

    Article  Google Scholar 

  • Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615

    Article  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic distances. Mol Biol Evol 9:552–569

    PubMed  CAS  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Ehrlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230:1350–1354

    PubMed  CAS  Google Scholar 

  • Sale PF (1978) Coexistence of reef fishes: a lottery for living space. Env Biol Fishes 3:85–102

    Article  Google Scholar 

  • Scheltema RS (1968) Dispersal of larvae by equatorial currents and it’s importance to the zoogeography of shoal-water tropical species. Nature 217:1159–1162

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetics data analysis. University Geneva Genetics and Biometry Laboratory, Geneva

    Google Scholar 

  • Shulman MJ (1998) What can population genetics tell us about dispersal and biogeographic history of coral-reef fishes? Aust J Ecol 23:216–225

    Google Scholar 

  • Shulman MJ, Bermingham E (1995) Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49:897–910

    Article  Google Scholar 

  • Siung-Chang AM, Lum-Kong A (2001) Possible link between reef-fish mortalities in the southeast Caribbean and South American river discharge (July–October 1999). Bull Mar Sci 68:343–340

    Google Scholar 

  • Skibinski DOF (2000) DNA tests of neutral theory: applications in marine genetics. Hydrobiologia 420:137–152

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981). Biometry: the principles and practice of statistics in biological research, 2nd edn. W.H. Freeman, New York

    Google Scholar 

  • Song CB, Near TJ, Page LM (1998) Phylogenetic relations among Percid fishes as inferred from mitochondrial cytochrome b DNA sequence data. Mol Phylogen Evol 10:343–353

    Article  CAS  Google Scholar 

  • Sponaugle S, Cowen RK (1994) Larval durations and recruitment patterns of two Caribbean gobies (Gobiidae): contrasting early life histories in demersal spawners. Mar Biol 120:133–143

    Google Scholar 

  • Sponaugle S, Cowen RK (1997) Early life history traits and recruitment patterns of Caribbean wrasses (Labridae). Ecol Monogr 67:177–202

    Article  Google Scholar 

  • Stenni B, Masson-Delmotte V, Johnsen S, Jouzel J, Longinelli A, Monnin E, Rothlisberger R, Selmo E (2001) An oceanic cold reversal during the last deglaciation. Science 293:2074–2077

    Article  PubMed  CAS  Google Scholar 

  • Streelman JT, Karl SA (1997) Reconstructing labroid evolution with single-copy nuclear DNA. Proc Roy Soc London Ser B 264:1011–1020

    Article  CAS  Google Scholar 

  • Streelman JT, Alfaro M, Westneat MW, Bellwood DR, Karl SA (2002) Evolutionary history of the parrotfishes: biogeography, ecomorphology, and comparative diversity. Evolution 56:961–971

    PubMed  CAS  Google Scholar 

  • Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KQ, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal marine populations. Bull Mar Sci 70:251–272

    Google Scholar 

  • Swofford DL (1999) PAUP* 4.0, Phylogenetic analysis using parsimony and other methods. Beta version 4.0?5. Sinauer Associates, Sunderland

    Google Scholar 

  • Taberlet P, Meyer A, Bouvet J (1992) Unusually large mitochondrial variation in populations of the blue tit, Parus caereleus. Mol Ecol 1:27–36

    PubMed  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Taylor MS, Hellberg ME (2005) Marine radiations at small geographic scales: speciation in neotropical reef gobies (Elacatinus). Evolution 59:374–385

    PubMed  Google Scholar 

  • Thresher RE (1980) Reef fish: behavior and ecology on the reef and in the aquarium. Palmetto, St. Petersburg

    Google Scholar 

  • Thresher RE, Brothers EB (1985) Reproductive ecology and biogeography of Indo-West Pacific angelfishes (Pisces: Pomacanthidae). Evolution 39:878–887

    Article  Google Scholar 

  • Toller WW, Moses K, McFall-Ngai MJ (1996) Molecular phylogeny of 11 holocentrid fishes (Order Beryciformes) inferred from rhodopsin cDNA and cytochrome b (unpublished, direct Genbank submission 1996) [http://www.ncbi.nlm.nih.gov]

  • Tyler JC, Johnson DG, Brothers EB, Tyler DM, Smith LC (1993) Comparative early life histories of western Atlantic squirrelfishes (Holocentridae): age and settlement of rhynchichthys, meeki, and juvenile stages. Bull Mar Sci 53:1126–1150

    Google Scholar 

  • Uyeno T, Matsuura K, Fujii E (eds) (1983) Fishes trawled off Surinam and French Guiana. Japan Marine Fishery Resource Research Center, Tokyo, Japan

  • Veron JEN (1995) Corals in space and time: the biogeography and evolution of the Scleractinia. Comstock/Cornell Publishing, Ithaca

  • Waples RS (1987) A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution 41:385–400

    Article  Google Scholar 

  • Woods LP (1953) Order Berycomorphida, Family Holocentridae: Soldierfishes, or squirrelfishes. In: Schultz LP, Herald ES, Lachner EA, Welander AD, Woods LP (eds) Fishes of the Marshall and Marianas Islands, vol 1, U.S. Natl Mus, Bull 202:191–225

  • Wyatt JR (1983) The biology, ecology and bionomics of the squirrelfishes, Holocentridae. In: Munro JL (ed) Caribbean coral reef fishery resources. ICLARM Stud Rev 7, pp 50–58 (Also appeared in Res Rpt Zool Dept Univ West Indies 3:1–41, 1976)

  • Yang Z (1996) Among-site rate variation and its impact on phylogenetic analyses. TREE 11:367–372

    Google Scholar 

Download references

Acknowledgments

We gratefully recognize the sampling efforts and logistic assistance of S.A. Karl, J.C. Avise, M. Ball, J. Beets, E. Bermingham, C.J. Bowen, R.W. Chapman, M. Courtney, L. Dahlstrom, D. Graff, R. Klinger, M. McDowall, S. McCafferty, H. Pinto da Costa, A. Popadic, L.A. Rocha, M. J. Shulman, T. Streelman, P. Taylor, W.W. Toller, and J. Young. Collections in the central and eastern Atlantic were made possible by the Direccão das Pescas do São Tomé, the Administrator of Ascension Island and the Governor of St. Helena Island. We thank S. Shanker and E. Almira for DNA sequencing services. For constructive advice and valuable critiques of this manuscript we thank C. Baldwin, K. Duncan, J. Eble, S. Floeter, H. Ficke, W.S. Grant, P. Heemstra, F. LeComte, S. Nishida, J. Randall, L.A. Rocha, J. Roman, J. Schultz, L. Seeb, T. Streelman, A. Summers, R. Toonen, B. Victor, D. Wilson, and two anonymous reviewers. This research was supported by the National Science Foundation (DEB-9727048 and OCE-0453167), with field support by the Smithsonian Tropical Research Institute, and with logistic support from the U. S. Air Force for transportation to Ascension Island. All research activities described herein comply with the laws and permit requirements of host nations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. W. Bowen.

Additional information

Communicated by S. Nishida, Tokyo

Appendices

Appendix 1

Haplotype distribution of 69 specimens of Myripristis jacobus .

 

Haplotype

Florida (N=10)

Grenada (N=16)

Brazil (N=10)

Ascension (N=13)

São Tomé (N=20)

Total (N=69)

A

2

4

8

8

10

32

B

1

3

1

5

C

3

3

D

2

2

E

2

2

F

2

2

G

2

2

H

1

1

I

1

1

J

1

1

K

1

1

L

1

1

M

1

1

N

1

1

O

1

1

P

1

1

Q

1

1

R

1

1

S

1

1

T

1

1

U

1

1

V

1

1

W

1

1

X

1

1

Y

1

1

Z

1

1

AA

1

1

BB

1

1

Appendix 2

Haplotype distribution of 101 specimens of Holocentrus ascensionis.

 

Haplotype

Florida (N=7)

St. Croix (N=6)

Belize (N=8)

Panama (N=6)

Brazil (N=20)

Ascension (N=20)

St. Helena (N=17)

São Tomé (N=17)

Total (N=101)

1

1

1

1

2

4

3

12

2

1

1

3

1

6

3

3

2

1

6

4

6

6

5

1

1

2

4

6

1

2

3

7

1

1

2

8

1

1

2

9

1

1

2

10

1

1

2

11

1

1

2

12

1

1

2

13

1

1

2

14

2

2

15

2

2

16

2

2

17

2

2

18

1

1

19

1

1

20

1

1

21

1

1

22

1

1

23

1

1

24

1

1

25

1

1

26

1

1

27

1

1

28

1

1

29

1

1

30

1

1

31

1

1

32

1

1

33

1

1

34

1

1

35

1

1

36

1

1

37

1

1

38

1

1

39

1

1

40

1

1

41

1

1

42

1

1

43

1

1

44

1

1

45

1

1

46

1

1

47

1

1

48

1

1

49

1

1

50

1

1

51

1

1

52

1

1

53

1

1

54

1

1

55

1

1

56

1

1

57

1

1

58

1

1

59

1

1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowen, B.W., Bass, A.L., Muss, A. et al. Phylogeography of two Atlantic squirrelfishes (Family Holocentridae): exploring links between pelagic larval duration and population connectivity. Mar Biol 149, 899–913 (2006). https://doi.org/10.1007/s00227-006-0252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0252-1

Keywords

Navigation