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A BRUNN-MINKOWSKI TYPE INEQUALITY FOR FANO MANIFOLDS AND
SOME UNIQUENESS THEOREMS IN KÄHLER GEOMETRY.

BO BERNDTSSON

ABSTRACT. Forφ a metric on the anticanonical bundle,−KX , of a Fano manifoldX we consider
the volume ofX

∫

X

e−φ.

In earlier papers we have proved that the logarithm of the volume is concave along geodesics in
the space of positively curved metrics on−KX . Our main result here is that the concavity is strict
unless the geodesic comes from the flow of a holomorphic vector field onX , even with very low
regularity assumptions on the geodesic. As a consequence weget a simplified proof of the Bando-
Mabuchi uniqueness theorem for Kähler - Einstein metrics. Ageneralization of this theorem to
’twisted’ Kähler-Einstein metrics and some classes of manifolds that satisfy weaker hypotheses
than being Fano is also given. We moreover discuss a generalization of the main result to other
bundles than−KX , and finally use the same method to give a new proof of the theorem of Tian
and Zhu on uniqueness of Kähler-Ricci solitons.

1. INTRODUCTION

Let X be ann-dimensional projective manifold with seminegative canonical bundle and let
Ω be a domain in the complex plane. We consider curvest → φt, with t in Ω, of metrics on
−KX that have plurisubharmonic variation so thati∂∂̄t,Xφ ≥ 0 ( see section 2 for notational
conventions). Thenφ solves the homogenous Monge-Ampère equation if

(1.1) (i∂∂̄t,Xφ)
n+1 = 0.

Such curves are called (generalized) geodesics, see [24] for the origins of this.
By a fundamental theorem of Chen, [10], we can for any givenφ0 defined on the boundary of

Ω, smooth with nonnegative curvature onX for t fixed on∂Ω, find a solution of (1.1) withφ0

as boundary values. This solution does in general not need tobe smooth (see [13],[23], [11]),
but Chen’s theorem asserts that we can find a solution that hasall mixed complex derivatives
bounded, i e∂∂̄t,Xφ is bounded onX × Ω. The solution equals the supremum (or maximum)
of all subsolutions, i e all metrics with semipositive curvature that are dominated byφ0 on the
boundary. Chen’s proof is based on some of the methods from Yau’s proof of the Calabi conjec-
ture, so it is not so easy, but it is worth pointing out that theexistence of a generalized solution
that is only bounded is much easier, see section 2.

On the other hand, if we do assume thatφ is smooth andi∂∂̄Xφ > 0 onX for anyt fixed, then

(i∂∂̄t,Xφ)
n+1 = nc(φ)(i∂∂̄Xφ)

n ∧ idt ∧ dt̄
1
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with

c(φ) =
∂2φ

∂t∂t̄
− |∂̄

∂φ

∂t
|2i∂∂̄Xφ,

where the norm in the last term is the norm with respect to the Kähler metrici∂∂̄Xφ. Thus
equation 1.1 is then equivalent toc(φ) = 0.

The case whenΩ = {t; 0 < Re t < 1} is a strip is of particular interest. If the boundary
data are independent ofIm t then so is the solution to 1.1. A famous observation of Semmes,
[27] and Donaldson, [14] is that the equationc(φ) = 0 then is the equation for a geodesic in the
space of Kähler potentials. Chen’s theorem thenalmostimplies that any two points in the space
of Kähler potentials can be joined by a geodesic, the provisobeing that we might not be able to
keep smoothness or strict positivity along all of the curve.This problem causes some difficulties
in applications, one of which we will address in this paper.

The next theorem is a direct consequence of the results in [6], [8].

Theorem 1.1. Assume that−KX ≥ 0 in the sense that it has a smooth metric of semipositive
curvature. Let letφt be a curve of (possibly singular) metrics on−KX such that

i∂∂̄t,Xφ ≥ 0

in the sense of currents. Then

F(t) := − log

∫

X

e−φt .

is subharmonic inΩ. In particular, ifφt does not depend on the imaginary part oft, F is convex.

Here we interpret the integral overX in the following way. For any choice of local coordinates
zj in some covering ofX by coordinate neighbourhoodsUj , the metricφt is represented by a
local functionφjt . The volume form

cne
−φjtdzj ∧ dz̄j ,

wherecn = in
2

is a unimodular constant chosen to make the form positive, isindependent of the
choice of local coordinates. We denote this volume form bye−φt, see section 2.

The results in [6] and [8] deal with more general line bundlesL overX and also more general
fibrations thanX × Ω, see section 3. A special case is the trivial vector bundleE overΩ with
fiberH0(X,KX + L) with theL2-metric

‖u‖2t =

∫

X

|u|2e−φt ,

see section 2. The main result is then a formula for the curvature ofE with theL2-metric. In this
paper we study primarily the simplest special case,L = −KX . ThenKX + L is trivial soE is
a line bundle and Theorem 1.1 says that this line bundle has nonnegative curvature. In section 9
we shall be able to extend part of the results we now describe to more general line bundles than
−KX . In case−KX > 0, so thatX is Fano, the result is a simple consequence of Hörmander’s
L2-estimates, see [7] for a very short proof in this case.
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Theorem 1.1 is formally analogous to the Brunn-Minkowski inequality for the volumes of
convex sets, and even more to its functional version, Prekopa’s theorem, [26]. Prekopa’s theorem
states that ifφ is a convex function onRn+1, then

f(t) := − log

∫

Rn

e−φt

is convex. The complex counterpart of this is that we consider a complex manifoldX with a
family of volume formsµt. In local coordinateszj the volume form can be written as above
µt = cne

−φjtdzj ∧ d̄zj , and ifµt is globally well definedφjt are then the local representatives of
a metric,φt, on−KX . Convexity in Prekopa’s theorem then corresponds to positive, or at least
semipositive, curvature ofφt, soX must be Fano, or its canonical bundle must at least have sem-
inegative curvature (in some sense:−KX pseudoeffective would be the minimal requirement).
The assumption in Prekopa’s theorem that the weight is convex with respect tox andt together
then corresponds to the assumptions in Theorem 1.1.

If K is a compact convex set inRn+1 we can takeφ to be equal to 0 inK and+∞ outside of
K. Prekopa’s theorem then implies the Brunn-Minkowski theorem, saying that the logarithm of
the volumes ofn-dimensional slices,Kt of convex sets are concave; concretely

(1.2) |K(t+s)/2|
2 ≤ |Kt||Ks|

The Brunn-Minkowski theorem has an important addendum which describes the case of equal-
ity : If equality holds in (1.2) then all the slicesKt andKs are translates of each other

Kt = Ks + (t− s)v

wherev is some vector inRn. A little bit artificially we can formulate this as saying that we
move from one slice to another via the flow of a constant vectorfield.

Remark1. It follows that from (1.2) and the natural homogenity properties of Lebesgue measure
that |Kt|

1/n, is also concave. This (’additive version’) is perhaps the most common formulation
of the Brunn-Minkowski inequalities, but the logarithmic (or multiplicative) version above works
better for weighted volumes and in the complex setting. For the additive version conditions for
equality are more liberal; thenKt may change not only by translation but also by dilation (see
[17]), but equality in the multiplicative case excludes dilation.

A natural question is then if one can draw a similar conclusion in the complex setting de-
scribed above. In [7] we proved that this is indeed so ifφ is known to be smooth and strictly
plurisubharmonic onX for t fixed. The main result of this paper is the extension of this toless
regular situations. We keep the same assumptions as in Theorem 1.1.

Theorem 1.2. Assume thatH0,1(X) = 0, and that the curve of metricsφt is independent of the
imaginary part oft. Assume moreover that the metricsφt are uniformly bounded in the sense
that for some smooth metric on−KX , ψ,

|φt − ψ| ≤ C.

Then, if the functionF in Theorem 1.1 is affine inΩ, there is a holomorphic vector fieldV onX
with flowFt such that

F ∗
t (∂∂̄φt) = ∂∂̄φ0.
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The assumption thatH0,1(X) = 0 enters into the proof at several places, but I do not know
if it is necessary for the theorem to hold. Notice however that it is automatically satisfied if
X is Fano. Then−KX > 0 soH0,1(X) = Hn,1(X,−KX) = 0 by Kodaira vanishing. More
generally, if−KX is supposed to be ’big’,Hn,1(X,−KX) also vanishes by the Demailly-Nadel
vanishing theorem.

There should also be a version of the theorem without the assumption thatφt be independent
of the imaginary part oft, and then assuming thatF be harmonic instead of affine. The proof
then seems to require more regularity assumptions. For simplicity we therefore treat only the
case whenφt is independent ofIm t, which anyway seems to be the most useful in applications.

This theorem is useful in view of the discussion above on the possible lack of regularity of
geodesics. As we shall see in section 2 the existence of a generalized geodesic satisfying the
boundedness assumption in Theorem 1.2 is almost trivial. One motivation for the theorem is to
give a new proof of the Bando-Mabuchi uniqueness theorem forKähler-Einstein metrics on Fano
manifolds. Recall that a metricωψ = i∂∂̄ψ, with ψ a metric on−KX solves the Kähler-Einstein
equation if

Ric(ωψ) = ωψ

or equivalently if for some positivea

(1.3) e−ψ = a(i∂∂̄ψ)n,

where we use the convention above to interprete−ψ as a volume form. By a celebrated theorem
of Bando and Mabuchi (see section 5), any two Kähler-Einstein metricsi∂∂̄φ0 and i∂∂̄φ1 are
related via the time-one flow of a holomorphic vector field. Insection 5 we shall give a proof of
this fact by joiningφ0 andφ1 by a geodesic and applying Theorem 1.2. This proof also showsthat
the uniqueness theorem of Bando-Mabuchi holds also for solutions of (1.3) that are only assumed
to be bounded. The original proof of Bando and Mabuchi used monotonicity properties of the
Mabuchi K-energy ([25]) along curves obtained from solvinga continuous family of Monge-
Ampere equations, and thus seems to require higher regularity. Below we will also consider
’twisted’ Kähler-Einstein equations, whose solutions arenever smooth, and then this difference
between the proofs is perhaps more important.

It should be noted that a similar proof of the Bando-Mabuchi theorem has already been given
by Berman, [2]. The difference between his proof and ours is that he uses the weaker version
of Theorem 1.2 from [7]. He then needs to prove that the geodesic joining two Kähler-Einstein
metrics is in fact smooth, which we do not need, and we also avoid the use of Chen’s theorem
since we only need the existence of a bounded geodesic.

A minimal assumption in Theorem 1.2 would be thate−φt be integrable, instead of bounded.
I do not know if the theorem holds in this generality, but in section 6 we will consider an inter-
mediate situation whereφt = τt + ψ, with τt bounded andψ such thate−ψ is integrable, so that
the singularities don’t change witht. Under various positivity assumptions we are then able to
prove a version of Theorem 1.2.

Apart from making the problem technically simpler, this extra assumption thatφt = τt + ψ
also introduces an additional structure, which seems interesting in itself. In section 7 we use
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it to give a generalization of the Bando-Mabuchi theorem to certain ’twisted’ Kähler-Einstein
equations,

(1.4) Ric(ω) = ω + θ

considered in [29],[3] and [15]. Hereθ is a fixed positive(1, 1)-current, that may e g be the
current of integration on a klt divisor. The conclusion of our theorem is that in (1.4) we have
uniqueness modulo the time one flow of a vector field that fixesθ. We shall also see, in section
8, that in many cases, this means that we in fact have absoluteuniqueness.

After this, in section 9, we briefly discuss a variant of Theorem 1.2 for more general line
bundles,L, than−KX . We then replace the functional

F(t) = − log

∫

e−φt ,

by a variant, introduced in [7], of Donaldson’sL-functional, [16]. Finally, in section 10, follow-
ing a suggestion of Yanir Rubinstein, we show how Theorem 1.2also implies a theorem of Tian
and Zhu, [30], on uniqueness for Kähler-Ricci solitons. This has also been noted independently
by W He, [20].

Another paper that is very much related to this one is [4], by Berman -Boucksom-Guedj-
Zeriahi. There is introduced a variational approach to Monge-Ampere equations and Kähler-
Einstein equations in a nonsmooth setting and a uniqueness theorem a la Bando-Mabuchi is
proved in the absence of holomorphic vector fields, using continuous geodesics. After the first
version of this paper was written, the results have also beengeneralized to some singular varieties
in [5]. I would like to thank all of these authors for helpful discussions, and Robert Berman in
particular for proposing the generalized Bando-Mabuchi theorem in section 7. Finally I am very
grateful to two referees for valuable comments, in particular for a suggestion how to prove that
the vector field in Theorem 1.2 is time independent.

2. PRELIMINARIES

2.1. Notation. Let L be a line bundle over a complex manifoldX, and letUj be a covering of
the manifold by open sets over whichL is locally trivial. A section ofL is then represented by
a collection of complex valued functionssj onUj that are related by the transition functions of
the bundle,sj = gjksk. A metric onL is given by a collection of realvalued functionsφj onUj ,
related so that

|sj|
2e−φ

j

=: |s|2e−φ =: |s|2φ

is globally well defined. We will writeφ for the collectionφj, and refer toφ as the metric onL,
although it might be more appropriate to calle−φ the metric. (Some authors callφ the ’weight’
of the metric.) We say thatL is positive,L > 0, if φ can be chosen smooth with curvaturei∂∂̄φ
strictly positive, and thatL is semipositive,L ≥ 0, if it has a smooth metric of semipositive
curvature.

A metricφ onL induces anL2-metric on the adjoint bundleKX + L. A sectionu of KX + L
can be written locally as

u = dz ⊗ s
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wheredz = dz1 ∧ ...dzn for some choice of local coordinates ands is a section ofL. We let

|u|2e−φ := cndz ∧ dz̄|s|
2
φ;

it is a volume form onX. TheL2-norm ofu is

‖u‖2 :=

∫

X

|u|2e−φ.

Note that theL2 norm depends only on the metricφ on L and does not involve any choice of
metric on the manifoldX.

In this paper we will be mainly interested in the case whenL = −KX is the anticanonical
bundle. Then the adjoint bundleKX + L is trivial and is canonically isomorphic toX ×C if we
have chosen an isomorphism betweenL and−KX . This bundle then has a canonical trivialising
section,u identically equal to 1. With the notation above

‖1‖2 =

∫

X

|1|2e−φ =

∫

X

e−φ.

This means explicitly that we interpret the volume forme−φ as

dzj ∧ dz̄je−φj

wheree−φ
j

= |(dzj)−1|2φ is the local representative of the metric for the frame determined by the
local coordinates. Notice that this is consistent with the conventions indicated in the introduction.

2.2. Bounded geodesics.We now consider curvest → φt of metrics on the line bundleL.
Here t is a complex parameter but we shall (almost) only look at curves that do not depend
on the imaginary part oft. We say thatφt is a subgeodesic ifφt is upper semicontinuous and
i∂∂̄t,Xφt ≥ 0, so that local representatives are plurisubharmonic with respect tot andX jointly.
We say thatφt is bounded if

|φt − ψ| ≤ C

for some constantC and some (hence any) smooth metric onL. For bounded geodesics the
complex Monge-Ampere operator is well defined and we say thatφt is a (generalized) geodesic
if

(i∂∂̄t,Xφt)
n+1 = 0.

Let φ0 andφ1 be two bounded metrics onL overX satisfyingi∂∂̄φ0,1 ≥ 0. We claim that there
is a bounded geodesicφt defined for the real part oft between 0 and 1, such that

lim
t→0,1

φt = φ0,1

uniformly onX. The curveφt is defined by

(2.1) φt = sup{ψt}

where the supremum is taken over all plurisubharmonicψt with

lim
t→0,1

ψt ≤ φ0,1.
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To prove thatφt defined in this way has the desired properties we first construct a barrier

χt = max(φ0 −ARe t, φ1 + A(Re t− 1)).

Clearlyχ is plurisubharmonic and has the right boundary values ifA is sufficiently large. There-
fore the supremum in (2.1) is the same if we restrict it toψ that are larger thanχ. For suchψ
the onesided derivative at 0 is larger than−A and the onesided derivative at 1 is smaller thanA.
Since we may moreover assume thatψ is independent of the imaginary part oft, ψ is convex in
t so the derivative with respect tot increases, and must therefore lie between−A andA. Hence
φt satisfies

φ0 − ARe t ≤ φt ≤ φ0 + ARe t

and a similar estimate at 1. Thusφt has the right boundary values uniformly. In addition, the up-
per semicontinuous regularizationφ∗

t of φt must satisfy the same estimate. Sinceφ∗
t is plurisub-

harmonic it belongs to the class of competitors forφt and must therefore coincide withφt, soφt
is plurisubharmonic. That finallyφt solves the homogenuous Monge-Ampere equation follows
from the fact that it is maximal with given boundary values, see e g [19], Thm 2.20.

Notice that as a byproduct of the proof we have seen that the geodesic joining two bounded
metrics is uniformly Lipschitz int. This fact will be very useful later on.

2.3. Approximation of metrics and subgeodesics.In the proofs we will need to approximate
our metrics that are only bounded, and sometimes not even bounded, by smooth metrics. Since
we do not want to lose too much of the positivity of curvature this causes some complications.
An extensive treatment of these matters can be found in [12].Here we will need only the simplest
part of this theory and we also refer to [9] for an elementary proof. We collect the approximation
results that we need in a proposition.

Proposition 2.1. LetM be a complex manifold with a positive hermitean formω, and letL be
a complex line bundle overM . Letφ be a bounded metric onL such thati∂∂̄φ ≥ 0. LetM ′ be
a relatively compact domain inM (which could beM itself if M is compact). Then there is a
strictly decreasing sequenceφj of smooth metrics onL overM ′ with limit φ, such that

i∂∂̄φj ≥ −ǫjω,

whereǫj > 0 tends to zero. Moreover:
(1) If L ≥ 0 this result holds without the assumption thatφ be bounded
and
(2) If L > 0, φj can be chosen so thati∂∂̄φj > 0, and the result holds without the assumption

thatφ be bounded.

Proof. This is basically the main result in [9], and for the convenience of the reader we translate
to the language ofγ-plurisubharmonic functions used in that paper. Letψ be a smooth metric on
L and letγ := i∂∂̄ψ. To any metricφ onL, we associate the functionϕ := φ−ψ. The condition
i∂∂̄φ ≥ 0 then says thatϕ is γ-plurisubharmonic, i e that

i∂∂̄ϕ ≥ −γ.

Similarily, i∂∂̄φ > 0 means thati∂∂̄ϕ > −γ, and i∂∂̄φ ≥ −ǫω means thatφ is (γ + ǫω)-
plurisubharmonic. The first statement of the proposition is(a special case of) Theorem 2 in [9].
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For statement (2) concerning positive bundles, we can assume thatγ > 0. Chooseφj as in
the first part, and letϕj := φj − ψ. Sinceφj are smooth and decrease, we may assume these
functions are negative. Then, ifδj decrease to zero,(1 − δj)ϕj decrease andi∂∂̄(1 − δj)ϕj ≥
−(1−δj)(γ+ǫjω) > −γ, if δj goes to zero sufficiently slowly. Thusφ can be approximated with
a sequence of metrics of strictly positive curvature. Ifφ is not bounded, we apply this argument to
ϕA := max(ϕ,−A), if A > 0. For eachA we get a sequence,ϕAj of strictly γ-plurisubharmonic
functions that decrease toϕA. Then take a sequenceAν that increases to infinity and let

ϕν := ϕAν

jν
,

wherejν is chosen inductively so that

ϕ
Aν+1

jν+1
< ϕAν

jν .

This is possible by Dini’s lemma sinceϕAν+1

j is a decreasing sequence of continuous functions
whose limit,ϕAν+1 is strictly smaller than the right hand side. This argument also proves (1). �

Besides using Proposition 2.1 to approximate metrics on a line bundle overX, we can also
apply it to the manifoldS × X, S = {t; 0 < Re t < 1}, to approximate (sub)geodesics over
any relatively compact subdomain ofS. In case the (sub)geodesic depends only onRe t we can
then obtain smooth approximants that also depend only onRe t. To see this, we replaceS by an
annulus by a conformal change of coordinates int, and take averages ofφj over the circle.

At one point we also wish to treat a bundle that is not even semipositive, but only effective. It
then has a global holomorphic section,s, and the singular metric we are interested in islog |s|2, or
some positive multiple of it. We then letψ be any smooth metric on the bundle and approximate
by

φν := log(|s|2 + ν−1eψ).

Explicit computation shows thati∂∂̄φν ≥ −Cω whereC is some fixed constant. Moreover,
outside any fixed neighbourhood of the zerodivisor ofs,

i∂∂̄φν ≥ −ǫνω

with ǫν tending to zero. This weak approximation will be enough for our purposes.
Let us finally note that we know from the barrier constructionin the previous subsection that

a bounded geodesicφt has uniformly boundedt-derivative,φ̇t. A similar argument shows that
an approximating sequenceφν , decreasing to a bounded geodesicφ, also can be chosen so that
it has uniformly boundedt-derivative. For this it is enough to replaceφν by

max(φνt ,max(φν0 −ARe t, φν1 + A(Re t− 1))).

This function still decreases toφ and has derivative bounded betweenA and−A. It is not smooth
because of the max construction, but we can replace the maximum by a smoothed out version of
max. The upshot of this is that we will (see lemma 4.1) also getdominated convergence almost
everywhere for the time derivatives of the approximating sequence.
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2.4. Monge-Ampere energy. In this subsection we collect some basic properties of the Monge-
Ampere energy. These facts are well known at least in the smooth case; our purpose here is to
check that they still hold for bounded curves, and we follow the arguments in [2]. Letφ0 andφ1

be two bounded metrics on a line bundleL, satisfyingi∂∂̄φj ≥ 0. Then their relative Monge-
Ampere energy

(2.2) E(φ1, φ0) := (1/n)

∫

X

(φ1 − φ0)

n
∑

0

(i∂∂̄φ1)
k ∧ (i∂∂̄φ0)

n−k

is well defined by basic pluripotential theory. (We will change the normalization later by dividing
by the volume ofL.) It has the property that ifφt depends smoothly ont, then

(d/dt)E(φt, φ0) =

∫

X

φ̇t(i∂∂̄φt)
n,

andE(φ0, φ0) = 0; these properties are sometimes taken as an alternative definition of E . We
could also write, ifφt is just a bounded subgeodesic,

E(φt, φ0) = p∗((φt − φ0))

n
∑

0

(i∂∂̄t,Xφt)
k ∧ (i∂∂̄φ0)

n−k),

wherep is the natural projection fromX ×Ω toΩ, andp∗ is the pushforward of a current. Since
the pushforward commutes with differentiation, the last formula shows that

i∂∂̄tE(φt, φ0) = (1/n)p∗((i∂∂̄t,Xφt)
n+1 − (i∂∂̄φ0)

n+1) = (1/n)p∗((i∂∂̄t,Xφt)
n+1).

Using the definition ofc(φ) from the introduction we can also write this as

i∂∂̄tE(φt, φ0) =

∫

X

c(φt)(i∂∂̄φt)
nidt ∧ dt̄.

At any rate we see thatE is convex along bounded subgeodesics and affine along bounded
geodesics. It also follows (most easily from the last formula) that on an affine lineφt =
φ0 + t(φ1 − φ0), E is concave, with derivative

(d/dt)t=0E(φt, φ0) =

∫

X

(φ1 − φ0)(i∂∂̄φ0)
n

(use (2.2)). The concavity shows that

(2.3) E(φ1, φ0) ≤

∫

X

(φ1 − φ0)(i∂∂̄φ0)
n.

If we replaceφ1 by φt in (2.3), withφt a bounded subgeodesic we see by monotone convergence
that the derivative ofE from the right satisfies

(2.4) (d/dt)t=0,+E(φt, φ0) ≤

∫

X

(φ̇0)+(i∂∂̄φ0)
n.

Similarily, the derivative att = 1 from the left satisfies

(2.5) (d/dt)t=1,−E(φt, φ0) ≥

∫

X

(φ̇1)−(i∂∂̄φ1)
n.
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We will have use for these formulas in section 5.

3. THE SMOOTH CASE

In this section we letL be a holomorphic line bundle overX andΩ be a smoothly bounded
open set inC. Fix once and for all one Kähler form onX, ω. We consider the trivial vector
bundleE overΩ with fiberH0(X,KX + L). In this section we let throughoutφt be a smooth
curve of metrics onL, with t a complex parameter. For any fixedt, φt induces anL2-norm on
H0(X,KX + L) as described in the previous section

‖u‖2t =

∫

X

|u|2e−φt ,

and ast varies we get an hermitian metric on the vector bundleE.
We now recall a formula for the curvature ofE with this metric from [6],[8]. Let for eacht in

Ω
∂φt = eφt∂e−φt = ∂ − ∂φt ∧ .

We let this operator act onL-valued forms,v, of bidegree(n − 1, 0), and we interpret it locally
in terms of some local trivialization. It can be easily checked that it is globally well defined.

Let v be anL-valued(n − 1, 0)-form and writeα = v ∧ ω, whereω is the fixed Kähler form
onX. Then (modulo a sign)

∂φtv = ∂̄∗φtα,

the adjoint of thē∂-operator for the metricφt. In particular this shows again that the operator∂φt

is well defined onL-valued forms.
This also means that for anyt we can solve the equation

∂φtv = η,

if η is anL-valued(n, 0)-form that is orthogonal to the space of holomorphicL-valued forms
(see remark 2 below). Moreover by choosingα = v ∧ ω orthogonal to the kernel of̄∂∗φt we can
assume thatα is ∂̄-closed, so that̄∂v ∧ ω = 0.( Hence, with this choice,̄∂v is a primitive form.)
If, as we assume from now, the cohomologyHn,1(X,L) = 0, the ∂̄-operator is surjective on
∂̄-closed forms, so the adjoint is injective, andv is uniquely determined byη.

Remark2. The reason we can always solve this equation fort andφ fixed is that thē∂-operator
from L-valued(n, 0)-forms to(n, 1)-forms onX has closed range. This implies that the adjoint
operator̄∂∗φt also has closed range and that its range is equal to the orthogonal complement of the
kernel of ∂̄. Moreover, that̄∂ has closed range means precisely that for any(n, 1)-form in the
range of∂̄ we can solve the equation̄∂f = α with an estimate

‖f‖ ≤ C‖α‖

and it follows from functional analysis that we then can solve∂φtv = η with the bound

‖v‖ ≤ C‖η‖

whereC is the sameconstant. We apply these general facts to the norms‖ · ‖ = ‖ · ‖ω,φt defined
by our fixed Kähler formω and metricsφt. In case all metricsφt are of equivalent size, so that
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|φt − φt0 | ≤ A it follows that we can solve∂φtv = η with anL2-estimate independent oft. This
observation is of crucial importance in the sequel.

Let ut be a holomorphic section of the bundleE and let

φ̇t :=
∂φ

∂t
.

For eacht we now solve

(3.1) ∂φtvt = π⊥(φ̇tut),

whereπ⊥ is the orthogonal projection on the orthogonal complement of the space of holomorphic
forms, with respect to theL2-norm‖ · ‖2t . With this choice ofvt we obtain the following formula
for the curvature ofE, see [6], [8]. In the formula,p stands for the natural projection map from
X × Ω to Ω andp∗(T ) is the pushforward of a differential form or current. WhenT is a smooth
form this is the fiberwise integral ofT .

Theorem 3.1. LetΘ be the curvature form onE and letut be a holomorphic section ofE. For
eacht in Ω let vt solve (3.1) and be such that∂̄Xvt ∧ ω = 0. Put

û = ut − dt ∧ vt.

Then

(3.2) 〈Θut, ut〉t = p∗(cni∂∂̄t,Xφ ∧ û ∧ û e−φ) +

∫

X

‖∂̄vt‖
2e−φtidt ∧ dt̄.

Remark3. This formula shows that the curvature is nonnegative ifi∂∂̄t,xφ ≥ 0. WhenL = −KX

this implies immediately Theorem 1.1, for smooth curves, and the general case follows by the
approximation techniques in the next section. The formula can be found at the end of section
2.1 in [8]. The proof there is a bit complicated since it dealswith the case of a general smooth
proper fibration. In the present case, the proof follows froma computation of

∂∂̄t p∗(û ∧ û).

At least when−KX > 0, Theorem 1.1 can also be proved by differentiatingF(t) and applying
Hörmander’sL2-estimate for∂̄. There are some difficulties in adapting this method of proofto
the case when−KX is merely semipositive. However, the main advantage of using formula (3.2)
instead is that it is useful when studying when equality holds in the inequalityF ′′(t) ≥ 0, which
we shall do next.

If the curvature acting onut vanishes it follows that both terms in the right hand side of (3.2)
vanish. In particular,vt must be a holomorphic form. To continue from there we first assume
(like in [7]) that i∂∂̄φt > 0 onX. Taking∂̄ of formula 3.1 fort fixed, we get

∂̄∂φtvt = ∂̄φ̇t ∧ ut.

Using
∂̄∂φt + ∂φt ∂̄ = ∂∂̄φt
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we get ifvt is holomorphic that
∂∂̄φt ∧ vt = ∂̄φ̇t ∧ ut.

The complex gradient of the functioniφ̇t with respect to the Kähler metrici∂∂̄φt is the(1, 0)-
vector field defined by

Vt⌋i∂∂̄φt = i∂̄φ̇t.

Since∂∂̄φt ∧ ut = 0 for bidegree reasons we get

(3.3) ∂∂̄φt ∧ vt = ∂̄φ̇t ∧ u = (Vt⌋∂∂̄φt) ∧ u = −∂∂̄φt ∧ (Vt⌋u).

If i∂∂̄φt > 0 we find that
−vt = Vt⌋u.

If vt is holomorphic it follows thatVt is a holomorphic vector field - outside of the zerodivisor of
ut and therefore everywhere since the complex gradient is smooth under our hypotheses. If we
assume thatX carries no nontrivial holomorphic vector fields,Vt and hencevt must vanish sȯφt
is holomorphic, hence constant. Hence

∂∂̄φ̇t = 0

so∂∂̄φt is independent oft. In general - if there are nontrivial holomorphic vector fields - we get
that the Lie derivative of∂∂̄φt equals

LVt∂∂̄φt = ∂Vt⌋∂∂̄φt = ∂∂̄φ̇t =
∂

∂t
∂∂̄φt.

Together with an additional argument showing thatVt must be holomorphic with respect tot as
well (see below) this gives that∂∂̄φt moves with the flow of the holomorphic vector field which
is what we want to prove.

For this it is essential that the metricsφt be strictly positive onX for t fixed, but we shall now
see that there is a way to get around this difficulty, at least in some special cases.

The main case that we will consider is when the canonical bundle ofX is seminegative, so we
can takeL = −KX . ThenKX + L is the trivial bundle and we fix a nonvanishing trivializing
sectionu = 1. Then the constant sectiont→ ut = u is a trivializing section of the (line) bundle
E. We write

F(t) = − log ‖u‖2t = − log

∫

X

|u|2e−φt = − log

∫

X

e−φt .

Still assuming thatφ is smooth, but perhaps not strictly positive onX, we can apply the curvature
formula in Theorem 3.1 withut = u and get

‖ut‖
2
t i∂∂̄tF = 〈Θut, ut〉t = p∗(cni∂∂̄φ ∧ û ∧ ûe−φt) +

∫

X

‖∂̄vt‖
2e−φtidt ∧ dt̄.

If F is harmonic, the curvature vanishes and it follows thatvt is holomorphic onX for any t
fixed. Sinceu never vanishes we candefinea holomorphic vector fieldVt by

−vt = Vt⌋u.

Almost as before we get

∂̄φ̇t ∧ u = ∂∂̄φt ∧ vt = −∂∂̄φt ∧ (Vt⌋u) = (Vt⌋∂∂̄φt) ∧ u,
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which implies that
Vt⌋i∂∂̄φt = i∂̄φ̇t.

if u never vanishes. This is the important point; we have been able to trade the nonvanishing of
i∂∂̄φt for the nonvanishing ofu. This is where we use that the line bundle we are dealing with is
L = −KX (see section 9 for partial results for other line bundles).

We also get the formula for the Lie derivative of∂∂̄φt alongVt

(3.4) LVt∂∂̄φt = ∂Vt⌋∂∂̄φt = ∂∂̄φ̇t =
∂

∂t
∂∂̄φt.

To be able to conclude from here we also need to prove thatVt depends holomorphically ont.
For this we will use the first term in the curvature formula, which also has to vanish. It follows
that

i∂∂̄φ ∧ û ∧ û

has to vanish identically. Since this is a semidefinite form in û it follows that

(3.5) ∂∂̄φ ∧ û = 0.

Considering the part of this expression that containsdt ∧ dt̄ we see that

(3.6) µ :=
∂2φ

∂t∂t̄
− ∂X(

∂φ

∂t̄
)(Vt) = 0.

If ∂∂̄Xφt > 0, µ is easily seen to be equal to the functionc(φ) defined in the introduction,
so the vanishing ofµ is then equivalent to the homogenous Monge-Ampère equation. In [7] we
showed that∂Vt/∂t̄ = 0 by realizing this vector field as the complex gradient of the functionc(φ)
which has to vanish if the curvature is zero. Here, where we nolonger assume strict postivity of
φt alongX we have the same problems as earlier to define the complex gradient. Therefore we
follow the same route as before, and start by studying∂vt/∂t̄ instead.

Recall that
∂φtvt = φ̇t ∧ u+ ht

whereht is holomorphic onX for eacht fixed. As we have seen in the beginning of this section,
vt is uniquely determined, and it is not hard to see that it depends smoothly ont if φ is smooth.
Differentiating with respect tōt we obtain

∂φt
∂vt
∂t̄

=

[

∂2φ

∂t∂t̄
− ∂X(

∂φ

∂t̄
)(Vt)

]

∧ u+
∂ht
∂t̄

.

Since the left hand side is automatically orthogonal to holomorphic forms, we get that

∂φt
∂vt
∂t̄

= π⊥(µu) = 0,

sinceµ = 0 by (3.6). Again, this means that∂vt/∂t̄ = 0 since∂vt/∂t̄ ∧ ω is still ∂̄X -closed, and
the cohomological assumption implies that∂φt is injective on(n− 1, 0)-formsγ such thatγ ∧ ω
is ∂̄-closed.
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All in all, vt is holomorphic int, soVt is holomorphic onX × Ω. Let Ft be the flow of the
time dependent holomorphic vector field−Vt, so that for any functionψ onX

∂

∂t
ψ(Ft(z)) = −Vt(ψ)(Ft(z)).

Then we also have for any formη onX that

∂

∂t
F ∗
t (η) = −F ∗

t (LVtη).

Applying this toη = i∂∂̄Xφt we get

∂

∂t
F ∗
t (i∂∂̄φt) = F ∗

t (
∂

∂t
i∂∂̄φt − LVti∂∂̄φt) = 0

by (3.4). Sinceη is real form, we can take real and imaginary parts of this, soF ∗
t (∂∂̄φt) = ∂∂̄φ0

which completes the proof.

4. THE NONSMOOTH CASE

Our strategy to treat the general case is to write our boundedcurve of metricsφ = φt as the
decreasing limit of a sequence of smooth metrics,φν , with i∂∂̄φν ≥ −ǫνω, whereǫν tends to
zero, see section 2.3. Then we can apply Theorem 3.1 for the metricsφν and study the limit as
ν tends to infinity. Note also that in case we assume that−KX > 0 we can even approximate
with metrics of strictly positive curvature. The presence of the negative term−ǫνω causes some
minor notational problems in the estimates below. We will therefore carry out the proof under
the assumptions thati∂∂̄φν ≥ 0 and leave the necessary modifications to the reader. Throughout
in this section we assume thatφt depends only on the real part oft. Thus we also assume that
Ω = I × iR is a strip, and for ease of notation we assume that0 lies in the intervalI, so that zero
is an interior point ofΩ.

Let Fν be defined the same way asF , but using the weightsφν instead. Then

i∂∂̄Fν

goes to zero weakly onΩ. We get a sequence of(n− 1, 0) formsvνt , solving

∂φtvνt = π⊥(φ̇νtu)

for φ = φν . By Remark 1, we have anL2-estimate forvνt in terms of theL2 norm ofφ̇νt , with the
constant in the estimate independent oft andν. Sinceφ̇νt is uniformly bounded by section 2.2, it
follows that we get a uniform bound for theL2-norms ofvνt over all ofX ×Ω. Therefore we can
select a subsequence ofvνt that converges weakly to a formv in L2. Sincei∂∂̄Fν tends to zero
weakly, Theorem 3.1 shows that theL2-norm of∂̄Xvν overX ×K goes to zero for any compact
K in Ω, so∂̄Xv = 0. Moreover, we claim that

∂φtX v = π⊥(φ̇tu)

in the (weak ) sense that

(4.1)
∫

X×Ω

dt ∧ dt̄ ∧ v ∧ ∂̄We−φ = (−1)n
∫

X×Ω

dt ∧ dt̄ ∧ π⊥(φ̇tu) ∧We−φ
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for any smooth formW of the appropriate degree.
To see this, note first that

∫

X×Ω

dt ∧ dt̄ ∧ vν ∧ ∂̄We−φ
ν

= lim(−1)n
∫

X×Ω

dt ∧ dt̄ ∧ π⊥(φ̇νtu) ∧We−φ
ν

.

In the left hand side we then use that (a subsequence of)vν converges weakly inL2 (since the
metricsφν are bounded we don’t need to worry about whichL2) to v. By dominated convergence
we also have that̄∂We−φ

ν

converges strongly tō∂We−φ. Combining these two facts we see that
the left hand side converges to

∫

X×Ω

dt ∧ dt̄ ∧ v ∧ ∂̄We−φ.

As for the right hand side we decompose

π⊥(φ̇νtu) = φ̇νtu+ hν

wherehν is holomorphic and both terms are bounded inL2. We can then take limits in the same
way and find that the right hand side tends to

∫

X×Ω

dt ∧ dt̄ ∧ (φ̇tu+ h) ∧We−φ.

A similar argument then shows thatφ̇u+h is orthogonal to holomorphic forms and so must equal
π⊥(φ̇u) which completes the proof of (4.1).

Formula (4.1) says that in the sense of distributions

∂X(ve
−φ) = π⊥(φ̇tu)e

−φ

(in a local trivialization). We next claim that this means that

∂Xv − ∂Xφ ∧ v = π⊥(φ̇tu).

This is because in the sense of distributions

∂X(ve
−φ) = lim ∂X(ve

−φν ) = lim(∂Xv − ∂Xφ
ν ∧ v)e−φ

ν

,

which equals
(∂Xv − ∂Xφ ∧ v)e−φ

by essentially the same argument as before.

We can now takē∂X of this equation and find that

(4.2) ∂∂̄Xφ ∧ v = ∂̄X φ̇t ∧ u.

Just as in the previous section we then define at dependent vector field onX by

V ⌋u = v.

Since∂̄Xv = 0, V is holomorphic onX for t fixed, and satisfies as before that

V ⌋∂∂̄Xφ = ∂̄X φ̇.
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As before this ends the argument if there are no nontrivial holomorphic vector fields onX.
Thenv must be zero, sȯφt is holomorphic, hence constant. In the general case, we finish by
showing thatvt is holomorphic int. The difficulty is that we don’t know any regularity ofvt with
respect tot, except that it lies inL2, so we need to formulate holomorphicity weakly.

We will use two elementary lemmas that we state without proof. The first one allows us get
good convergence properties for geodesics, when the metrics only depend on the real part oft
and therefore are convex with respect tot.

Lemma 4.1. Let fν be a sequence of smooth convex functions on an interval inR that decrease
to the convex functionf . Let a be a point in the interval such thatf ′(a) exists. Thenf ′

ν(a)
converge tof ′(a). Since a convex function is differentiable almost everywhere it follows thatf ′

ν

converges tof ′ almost everywhere, with dominated convergence on any compact subinterval.

In particular the lemma can be applied to a decreasing sequenceφνt of subgeodesics that are
independent ofIm t and decrease to a geodesicφt. For any fixedx in X it follows that φ̇νt (x)
converges toφ̇t(x) for almost allt, so it follows that this holds almost everywhere onΩ × X.
By section 2.3 we also have a fixed bound on thet-derivative ofφνt , so we even have dominated
convergence.

Another technical problem that arises is that we are dealingwith certain orthogonal projections
on the manifoldX, where the weight depends ont. The next lemma gives us control of how these
projections change.

Lemma 4.2. Let αt be forms onX with coefficients depending ont in Ω. Assume thatαt is
Lipschitz with respect tot as a map fromΩ to L2(X). Let πt be the orthogonal projection on
∂̄-closed forms with respect to the metricφt and the fixed Kähler metricω. Thenπt(αt) is also
Lipschitz, with a Lipschitz constant depending only on thatof α and the Lipschitz constant ofφt
with respect tot.

Note that in our case, whenφ is independent of the imaginary part oft, we have control of
the Lipschitz constant with respect tot of φt , and also by the first lemma uniform control of the
Lipschitz constant ofφνt , since the derivatives are increasing.

It follows from the curvature formula that

aν :=

∫

X×Ω′

i∂∂̄φν ∧ û ∧ ûe−φ
ν

goes to zero ifΩ′ is a relatively compact subdomain ofΩ. ShrinkingΩ slightly we assume that
this actually holds withΩ′ = Ω. By the Cauchy inequality

∫

X×Ω

i∂∂̄φν ∧ û ∧We−φ
ν

≤ (aν

∫

X×Ω

i∂∂̄φν ∧W ∧ W̄e−φ
ν

)1/2

if W is any(n, 0)-form. ChooseW to contain no differentialdt, so that it is an(n, 0)-form onX
with coefficients depending ont. Then

∫

X×Ω

i∂∂̄φν ∧W ∧ W̄ e−φ
ν

=

∫

X×Ω

i∂∂̄tφ
ν ∧W ∧ W̄ e−φ

ν
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We now assume thatW has compact support. We will then use the one variable Hörmander
inequality, which says that ifw is a function oft with compact support inΩ and one derivative
in L2, andψ is a smooth function inΩ , then

∫

Ω

i∂∂̄ψ|w|2e−ψ ≤

∫

Ω

|∂ψw|2e−ψ.

(This is the dual version of Hörmander’sL2-estimate and can be found in [21].) We apply this
inequality tow = W andψ = φν , where we considerW andφν as functions oft by holding the
X-variable fixed. The one variable Hörmander inequality withrespect tot then shows that

(4.3)
∫

X×Ω

i∂∂̄tφ
ν ∧W ∧ W̄ e−φ

ν

≤

∫

X×Ω

|∂φ
ν

t W |2e−φ
ν

.

From now we assume thatW is Lipschitz with respect tot as a map fromΩ into L2(X). Then
(4.3) is uniformly bounded, so

∫

X×Ω

idt ∧ dt̄ ∧ (µνu) ∧We−φ
ν

goes to zero, whereµν is defined as in (3.6) withφ replaced byφν . By Lemma 4.2
∫

X×Ω

idt ∧ dt̄ ∧ (µνu) ∧ π⊥We−φ
ν

also goes to zero. Therefore
∫

X×Ω

idt ∧ dt̄ ∧ π⊥(µ
νu) ∧We−φ

ν

.

goes to zero. Now recall thatπ⊥(µνu) = ∂φν (∂vνt /∂t̄) and integrate by parts. This gives that
∫

X×Ω

idt ∧ dt̄ ∧
∂vνt
∂t̄

∧ ∂̄XWe−φ
ν

also vanishes asν tends to infinity.

Next we letα be a form of bidegree(n, 1) onX × Ω that does not contain any differential
dt. We assume it is Lipschitz with respect tot and decompose it into one part,∂̄XW , which is
∂̄X -exact and one which is orthogonal to∂̄X -exact forms. This amounts of course to making this
orthogonal decomposition for eacht separately, and by Lemma 4.2 each term in the decomposi-
tion is still Lipschitz int, uniformly in ν. Sincevνt ∧ ω is ∂̄X -closed by construction, this holds
also for∂vν/∂t̄. By our cohomological assumption, it is also∂̄-exact, and we get that

∫

X×Ω

idt ∧ dt̄ ∧
∂vνt
∂t̄

∧ αe−φ
ν

=

∫

X×Ω

idt ∧ dt̄ ∧
∂vνt
∂t̄

∧ ∂̄XWe−φ
ν

.

Hence
∫

X×Ω

dt ∧ vνt ∧ ∂
φν

t αe−φ
ν
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goes to zero. By Lemma 4.1 we may pass to the limit here and finally get that

(4.4)
∫

X×Ω

dt ∧ vt ∧ ∂
φ
t αe

−φ = 0,

under the sole assumption thatα is of compact support, and Lipschitz int. This is almost the
distributional formulation of̄∂tv = 0, except thatφ is not smooth. But, replacingα by eφ−ψα,
whereψ is another metric onL, we see that if (4.4) holds for someφ, Lipschitz int, it holds for
any such metric. Therefore we can replaceφ in (4.4) by some other smooth metric. It follows that
vt is holomorphic int and therefore, since we already know it is holomorphic onX, holomorphic
onX × Ω. This completes the proof.

4.1. Time independence ofV . We shall now prove that the vector fieldsVt are in fact indepen-
dent of timet, i e thatVt = (Ft)∗(V0). LetV = ∂/∂t− Vt. This is a holomorphic vector field on
Ω×X.

Lemma 4.3.

(4.5) V⌋∂∂̄t,Xφ = 0.

Proof. Recall thatFt is the flow of the time dependent holomorphic vectorfield−Vt, and that

(4.6) F ∗
t (∂∂̄Xφt) = ∂∂̄φ0

(see end of section 3). Moreover, ifψ(t, z) is a function then

(∂/∂t)ψ(t, Ft(z)) = Vψ.

By (4.6), the volume formse−φt must satisfy

F ∗
t (e

−φt) = e−φ0+c(t),

with c(t) constant onX for t fixed. Integrating overX we find that

log

∫

e−φt = c(t) + log

∫

e−φ0,

soc(t) is by assumption a linear function. Choose local coordinates zj and take representatives
of the metrics,φjt . Then

Vφjt (z) = (d/dt)(φ0(z)− c(t)) = −c′.

Hence
V⌋∂∂̄t,Xφt = ∂̄Vφjt = 0.

�

Remark4. The formû = u− dt∧ v in Theorem 3.1 can be written̂u = −V⌋(dt∧u). Using this
one can check that the equationV⌋∂∂̄φ = 0 is equivalent to∂∂̄φ ∧ û = 0. This means precisely
that the first term in the curvature formula (3.2) vanishes. We have given the indirect proof above
to avoid having to check that the formula (3.2) holds in the limit as well.

Lemma 4.4. (Ft)∗(φ̇t) is independent oft.
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Proof. Sinceφ depends only onRe t, φ̇t is real valued, so it suffices to prove that(Ft)
∗(φ̇t) is

holomorphic int. But
∂/∂t̄(Ft)

∗(φ̇t) = V̄(φ̇t),

and sincēV(φ̇t) is the coefficient ofdt in V̄⌋∂∂̄t,Xφ it vanishes by the previous lemma. �

Proposition 4.5. Vt is a time independent vector field, i e

Vt = (Ft)∗(V0)

.

Proof. We know that
Vt⌋ωt = ∂̄φ̇t.

Pulling back by the biholomorphic mapFt we get from the previous lemma (sinceF ∗
t (ωt) = ω0)

that
(F−t)∗(Vt)⌋ω0 = ∂̄φ̇0.

This means that
((F−t)∗(Vt)− V0)⌋ω0 = 0.

In caseω0 is smooth and strictly positive this implies immediately that (F−t)∗(Vt) = V0. In the
general case we conclude by Proposition 8.2 (see section 8). �

5. THE BANDO-MABUCHI THEOREM.

A Kähler metric,ω, on a Fano manifoldX is a Kähler-Einstein metric if it equals a constant
multiple of its Ricci form, i e if it satisfies the equation

(5.1) Ric(ω) = aω,

wherea is a positive constant. Multiplyingω with the constanta does not change the Ricci
curvature so we may always assume thata = 1, and thenω must lie inc1(−KX). This means
thatω = i∂∂̄φ for some metricφ on−KX and (5.1) says that

e−φ = a′(i∂∂̄φ)n,

for some constanta′ if we interpret the left hand side as a volume form as described in section
2.1. This means thatφ is a critical point for theDing functional

D(ψ) := log

∫

e−ψ + E(ψ, ψ0)/Vol(−KX),

whereψ0 is an arbitrary metric on−KX andE is the relative Monge-Ampere energy (see section
2.4 for definition and basic properties). Thusφ0 solves the Kähler-Einstein equation if and only
if (d/ds|s=0D(φs) = 0 for any smooth curveφs.

Suppose now thatφ0 andφ1 are two Kähler-Einstein metrics. We connect them by a bounded
geodesicφt . Thenφt depends only on the real part oft soG(t) := −D(φt) is convex. We claim
that since both end points are Kähler-Einstein metrics, 0 and 1 are stationary points forG, soG
must be linear int. This would be immediate if the geodesic were smooth, but we claim that
it also holds if the geodesic is only bounded, with boundary behaviour as described in section
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2.2. The functionF is convex, hence has onesided derivatives at the endpoints,and using the
convexity ofφ with respect tot one sees that they equal

∫

φ̇te
−φ/

∫

e−φ

(whereφ̇t now stands for the onesided derivatives). For the functionE(φt, ψ) we use the inequal-
ities (2.3) and (2.4). They show that the onesided derivatives ofG at t = 0 and t = 1 satisfy
G ′(0) ≥ 0 andG ′(1) ≤ 0. SinceG is convex this is only possible if both derivatives are zero and
G is constant. As moreoverE is affine along the geodesic it follows thatlog

∫

e−φt is also affine.
Thus we can apply Theorem 1.2 and it follows that∂∂̄φt are related via the flow of a holomor-

phic vector field, so we have proved the following theorem of Bando and Mabuchi, [1].

Theorem 5.1.LetX be a Fano manifold and supposeω0 andω1 are two solutions of the Kähler-
Einstein equation (5.1). Then there is a holomorphic vectorfield onX with time 1 flowF , such
thatF ∗(ω1) = ω0.

Notice that in our proof we do not need to assume that the metrics are smooth -it is enough to
assume that their potentials are bounded.

6. TWO EXTENSIONS OFTHEOREM 1.2 FOR UNBOUNDED METRICS

One might ask if Theorem 1.2 is valid under even more general assumptions. A minimal
requirement is of course thatF be finite, or in other words thate−φt be integrable. For all we
know Theorem 1.2 might be true in this generality, but here wewill limit ourselves to curves of
metrics that can be decomposed into one part which is boundedand an unbounded part that does
not depend ont.

6.1. The case−KX ≥ 0. Let t→ φt be a curve of singular metrics onL = −KX ≥ 0 that can
be written

φt = τt + ψ

whereψ is a metric on anR-line bundleS andτt is a curve of metrics on−(KX + S) such that:

(i) τt is bounded and only depends onRe t.

(ii) e−ψ is integrable,ψ does not depend ont andψ is locally bounded in the complement of a
closed pluripolar set.

and

(iii) i∂∂̄t,X(φt) ≥ 0.

Theorem 6.1. Assume that−KX ≥ 0 and thatH0,1(X) = 0. Let φt = τt + ψ be a curve of
metrics on−KX satisfying (i)-(iii). Assume that

F(t) = − log

∫

X

e−φt

is affine. Then there is a holomorphic vector fieldV onX with flowFt such that

F ∗
t (∂∂̄φt) = ∂∂̄φ0.
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We also state an important addendum.

Theorem 6.2.Assume that in addition to the assumptions in Theorem 6.1i∂∂̄ψ ≥ 0 andi∂∂̄τt ≥
0 in the sense of currents. Then

(6.1) V ⌋i∂∂̄ψ = 0

andF ∗
t (∂∂̄ψ) is independent oft.

We shall see in the last section that in many cases (6.1) implies that actuallyV = 0, so that the
flow F ∗

t is the identity map and∂∂̄φt must also be independent oft.
The proof of this theorem is almost the same as the proof of Theorem 1.2. The main thing to

be checked is that forφ = φν a sequence of smooth metrics decreasing toφ we can still solve
the equations

∂φ
ν
t vt = π⊥(φ̇

ν
t u)

with anL2 -estimate independent oft andν.

Lemma 6.3. LetL be a holomorphic line bundle overX with a metricξ satisfyingi∂∂̄ξ ≥ −ω0

for some fixed Kähler formω0. Letξ0 be a smooth metric onL with ξ ≤ ξ0, and assume

I :=

∫

X

eξ0−ξ <∞.

Then there is a constantA, only depending onI andξ0 ( not onξ!) such that iff is a ∂̄-exactL
valued(n, 1)-form with

∫

X

|f |2e−ξ ≤ 1

there is a solutionu to ∂̄u = f with
∫

X

|u|2e−ξ ≤ A.

(The integrals are understood to be taken with respect to some arbitrary smooth volume form.)

Proof. The assumptions imply that
∫

|f |2e−ξ0 ≤ 1.

Since∂̄ has closed range forL2-norms defined by smooth metrics, we can solve∂̄u = f with
∫

|u|2e−ξ0 ≤ C

for some constant depending only onX andξ0. Choose a collection of coordinate ballsBj such
thatBj/2 coverX. In eachBj we can, by classical Hörmander estimates inCn, solve∂̄uj = f
with

∫

Bj

|uj|
2e−ξ ≤ C1

∫

Bj

|f |2e−ξ ≤ C1,
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C1 only depending on the size of the balls and the choice ofω0. Thenhj := u−uj is holomorphic
onBj and

∫

Bj

|hj |
2e−ξ0 ≤ C2,

so
sup
Bj/2

|hj|
2e−ξ0 ≤ C3.

Hence
∫

Bj/2

|hj|
2e−ξ ≤ C3I

and therefore
∫

Bj/2

|u|2e−ξ ≤ C4I.

Summing up we get the lemma. �

By the discussion in section 2.3, the assumption that−KX ≥ 0 implies that we can writeφt
as a limit of a decreasing sequence of smooth metricsφνt with

i∂∂̄φνt ≥ −ǫνω

whereǫν tends to zero. Applying the lemma toξ = φνt andξ0 some arbitrary smooth metric we
see that we have uniform estimates for solutions of the∂̄-equation, independent ofν andt. By
remark 2, section 3, the same holds for the adjoint operator,which means that we can construct
(n− 1, 0)-formsvν just as in section 3, and have a uniform bound on theirL2-norms. Again we
can take weak limits and get an(n− 1, 0)-form, v that satisfies̄∂Xv = 0.

We claim thatv satisfies formula

(6.2) ∂Xv − ∂Xφ ∧ v = π⊥(φ̇u)

as in the case of bounded metrics in section 4. This is not quite obvious since the proof of this
rested on (4.1) which used that the geodesic was bounded. However, formula (4.1) still holds if
W is supported outside the closed pluripolar set whereψ = −∞. This means that (6.2) holds
there. Moreover, the left hand side lies inL2 with respect to our unbounded metric, hence in
particular in ordinaryL2

loc. Formula (6.2) says that (locally)

∂Xv − ∂Xφ ∧ v − φ̇u

is holomorphic onX for fixed t away from the singular set ofψ. Since it is moreover inL2 and
pluripolar sets are removable forL2-holomorphic functions it follows that it is holomorphic on
all of X.

Hence we conclude that
∂∂̄Xφ ∧ v = ∂̄φ̇ ∧ u

on all ofX. We then again define a vector fieldV onX by V ⌋u = v and find that

(6.3) V ⌋∂∂̄Xφ = ∂̄X φ̇

and the proof concludes in the same way as before.
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We finally turn to the proof of the addendum in Theorem 6.2. Forthis we use the vector field
onΩ×X

V :=
∂

∂t
− V,

as in section 4.1.
Lemma 4.3 implies that

0 = iV̄ ∧ V⌋∂∂̄t,Xφ = iV̄ ∧ V⌋∂∂̄t,Xτ + iV̄ ∧ V⌋∂∂̄ψ

Since both terms in the right hand side are nonnegative by assumption, they must both vanish.
But, sinceψ does not depend ont

+iV̄ ∧ V⌋∂∂̄ψ = +iV̄ ∧ V ⌋∂∂̄ψ.

Sincei∂∂̄ψ is a positive current, this implies by Cauchy’s inequality thatW̄ ∧ V ⌋i∂∂̄ψ = 0 for
any(0, 1) vector fieldW , soV ⌋∂∂̄ψ = 0 . This proves Theorem 6.2.

6.2. Yet another version. We also briefly describe yet another situation where the samecon-
clusion as in Theorem 6.1 can be drawn even though we do not assume that−KX ≥ 0. The
assumptions are very particular, and it is not at all clear that they are optimal, but they are cho-
sen to fit with the properties of desingularisations of certain singular varieties. We then assume
instead that−KX can be decomposed

−KX = −(KX + S) + S

whereS is theR-line bundle corresponding to a klt -divisor∆ ≥ 0 and we assume−(KX+S) ≥
0. We moreover assume that the underlying variety of∆ is a union of smooth hypersurfaces with
simple normal crossings. We then look at curves

φt = τt + ψ

whereτt is bounded,i∂∂̄t,Xτt ≥ 0 andψ is a fixed metric onS satisfyingi∂∂̄ψ = [∆]. We claim
that the conclusion of Theorem 6.1 holds in this situation aswell. The difference as compared to
our previous case is that we do not assume thatφt can be approximated by a decreasing sequence
of metrics with almost positive curvature. For the proof we approximateτt by a decreasing
sequence of smooth metricsτ νt satisfying

i∂∂̄τ νt ≥ −ǫνω.

As forψ we approximate it following the scheme at the end of section 2.3 by a sequence satisfy-
ing

i∂∂̄ψν ≥ −Cω

and
i∂∂̄ψν ≥ −ǫνω

outside of any neighbourhood of∆. Then letφνt = τ νt +ψ
ν . Now consider the curvature formula

(3.2)

(6.4) 〈Θνut, ut〉t = p∗(cni∂∂̄φ
ν
t ∧ û ∧ ûe

−φνt ) +

∫

X

‖∂̄vνt ‖
2e−φ

ν
t idt ∧ dt̄
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We want to see that the second term in the right hand side tendsto zero given that the curvature
Θν tends to zero, and the problem is that the first term on the right hand side has a negative part.
However,

p∗(cni∂∂̄φ
ν
t ∧ û ∧ ûe

−φνt )

can for anyt be estimated from below by

(6.5) − ǫν‖û‖
2 − C

∫

U

|vνt |
2e−φ

ν

whereU is any small neighbourhood of∆ if we chooseν large. This means, first, that we still
have at least a uniform upper estimate on∂̄vνt . This, in turn gives by the technical lemma below
that theL2-norm ofvνt over a small neighbourhood of∆ must be small if the neighbourhood is
small. Shrinking the neighbourhood asν grows we can then arrange things so that the negative
part in the right hand side goes to zero. Therefore theL2-norm of ∂̄vνt goes to zero after all, and
the limit of

〈Θνut, ut〉

is zero. The last fact means that

t→ − log

∫

e−φt

is convex.
After this the proof proceeds as before. We collect this in the next theorem.

Theorem 6.4.Assume that−(KX + S) ≥ 0 and thatH0,1(X) = 0. Letφt = τt + ψ be a curve
of metrics on−KX where

(i) τt are bounded metrics on−(KX + S) with i∂∂̄τt ≥ 0, depending only onRe t,
and
(ii) ψ is a metric onS with i∂∂̄ψ = [∆], where∆ is a klt divisor with simple normal crossings.
Then

F(t) = − log

∫

X

e−φt

is convex. IfF(t) is affine, there is a holomorphic vector fieldV onX with flowFt such that

F ∗
t (∂∂̄φt) = ∂∂̄φ0.

We end this section with the technical lemma used above.

Lemma 6.5. The term
∫

U

|vνt |
2e−φ

ν

in (6.2) can be made arbitrarily small ifU is a sufficiently small neighbourhood of∆

Proof. Covering∆with a finite number of polydisks, in which the divisor is a union of coordinate
hyperplanes, it is enough to prove the following statement:

LetP be the unit polydisk inCn and letv be a compactly supported function inP . Let

ψǫ =
∑

αj log(|zj|
2 + ǫ)
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where0 ≤ αj < 1. Assume
∫

P

(|v|2 + |∂̄v|2)e−ψ ≤ 1.

Then forδ >> ǫ
∫

∪{|zj |≤δ}

|v|2e−ψǫ ≤ cδ

wherecδ tends to zero withδ.
To prove this we first estimate the integral over|z1| ≤ δ using the one variable Cauchy formula

in the first variable

v(z1, z
′) = π−1

∫

vζ̄1(ζ1, z
′)/(ζ1 − z1)

which gives

|v(z1, z
′)|2 ≤ C

∫

|vζ̄1(ζ1, z
′)|2/|ζ1 − z1|.

Then multiply by(|z1|2 + ǫ)−α1 and integrate with respect toz1 over|z1| ≤ δ. Use the estimate
∫

|z1|≤δ

1

(|z1|2 + ǫ)α1 |z1 − ζ1|
≤ cδ(|ζ1|

2 + ǫ)−α1 ,

multiply by
∑n

2 αj log(|zj|
2 + ǫ) and integrate with respect toz′. Repeating the same argument

for z2, ..zn and summing up we get the required estimate.
�

7. A GENERALIZED BANDO-MABUCHI THEOREM

As pointed out to me by Robert Berman, Theorems 6.1 and 6.5 lead to versions of the Bando-
Mabuchi theorem for ’twisted Kähler-Einstein equations’,[29], [3], and [15]. Letθ be a positive
(1, 1)-current that can be written

θ = i∂∂̄ψ

with ψ a metric on aR-line bundleS. The twisted Kähler-Einstein equation is

(7.1) Ric(ω) = ω + θ,

for a Kähler metricω in the classc[−(KX + S)]. Writing ω = i∂∂̄φ, whereφ is a metric on the
R-line bundleF := −(KX + S), this is equivalent to

(7.2) (i∂∂̄φ)n = e−(φ+ψ),

after adjusting constants. We will consider only bounded solutions to this equation.
To be able to apply Theorems 6.1 and 6.4 we need to assume thate−ψ is integrable. By this

we mean that representatives with respect to a local frame are integrable. Whenθ = [∆] is the
current defined by a divisor, it means that the divisor is klt.

Solutionsφ of (7.2) are now critical points of the function

Dψ(φ) := − log

∫

e−(φ+ψ) − E(φ, χ)
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whereχ is an arbitary metric onF . Hereψ is fixed and we let the variableφ range over bounded
metrics withi∂∂̄φ ≥ 0. If φ0 andφ1 are two critical points, it follows from the discussion in
section 2 that we can connect them with a bounded geodesicφt. SinceE is affine along the
geodesic it follows that

t→ − log

∫

e−(φt+ψ)

is affine along the geodesic and we can apply Theorem 6.1.

Theorem 7.1.Assume that−KX is semipositive ( i e that it has a smooth metric of semipositive
curvature) and thatH0,1(X) = 0. Assume thati∂∂̄ψ = θ, wheree−ψ is integrable andθ is a
positive current. Letφ0 andφ1 be two bounded solutions of equation (7.2) withi∂∂̄φj ≥ 0. Then
there is a holomorphic vector field,V , with time one flow,F , of X, homotopic to the identity,
such that

F ∗(∂∂̄φ1) = ∂∂̄φ0.

Moreover,

V ⌋θ = 0

and

F ∗(θ) = θ.

Proof. The first part follows immediately from Theorem 6.1. Theorem6.2 says thatVt⌋θ = 0.
This implies that the Lie derivative ofθ alongV vanishes, which gives the last statement.

�

In the same way we get from Theorem 6.4

Theorem 7.2. Assume that−KX = −(KX + S) + S where−(KX + S) is semipositive andS
is theR-line bundle corresponding to a klt divisor∆ ≥ 0 with simple normal crossings. Assume
also thatH0,1(X) = 0. Letφ0 andφ1 be two bounded solutions of equation (7.2) withθ = [∆]
and withi∂∂̄φj ≥ 0. Then there is a holomorphic vector field,V , with time one flow,F , such that

F ∗(∂∂̄φ1) = ∂∂̄φ0.

Moreover

Vt⌋∆ = 0

soVt is tangential to∆, and

F ∗([∆]) = [∆].

In some cases the conclusion of Theorems 7.1 and 7.2 actuallyimply thatV = 0, so thatF
is the identity map andω0 = ω1. Probably the simplest case of this is the following (see the
next section for variants on this). We assume thatX is Fano so that−KX > 0 and then let
(S) = −rKX , where0 < r < 1. Then we can rewrite equation (7.1) as

Ric(ω) = (1− r)ω + rθ,
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whereω is a Kähler metric inc1[−KX ] andθ also lies in that class. We chooseθ = [(1/λ)∆]
where∆ is a smooth connected divisor of multiplicity one, defined bya sections of −λKX , λ a
positive integer. Then we can takeψ in Theorem 7.1 as

ψ = (r/λ) log |s|2.

Clearly e−ψ is locally integrable and it follows from Theorem 7.1 thatV is tangential to the
divisor ∆ . But this implies thatV must be identically zero. This was proved by Berman for
λ = 1 and by Song and Wang forλ ≥ 1; see [3] and [28]. (We will also give a different proof
and partial extension for the case whenλ > 1 in the next section.) We summarize in a theorem.

Theorem 7.3.Let [∆] be a smooth connected divisor of multiplicity one on a Fano manifoldX,
defined by a section,s, ofλ(−KX), whereλ is a positive integer. Letω0 andω1 be two solutions
in c1[−KX ] to the twisted Kähler-Einstein equation

Ric(ω) = (1− t)ω + t/λ[∆],

with 0 < t < 1, of the formωj = i∂∂̄φj , φj bounded. Thenω0 = ω1.

Notice that the caseλ = 1 of this theorem is rather delicate. ForX equal to the Riemann sphere
we can take the disconnected anticanonical divisor∆ = {0,∞}. Then clearly the conclusion of
Theorem 7.3 fails as there are nontrivial automorphismsz 7→ az fixing ∆. Thus the assumption
of connectedness is necessary and, similarily,∆ = 2{0} shows that we also need to assume
multiplicity one. Note also, as pointed out by a referee, that ∆ is automatically connected if
n > 1, as follows from the Lefschetz heyperplane theorem, [18].

8. COMPLEX GRADIENTS AND UNIQUENESS FOR TWISTEDKÄHLER-EINSTEIN EQUATIONS

The main point of the proofs in the previous sections was thatwe found a holomorphic vector
field,V , onX satisfying

V ⌋∂∂̄φ = ∂̄φ̇,

so thatV was sort of a ’complex gradient’ in a rather non regular situation. This vector field also
satisfied

V ⌋θ = 0

whereθ is the twisting term in the twisted Kähler-Einstein equations. We will now discuss when
this last condition forcesV to be zero. Mainly to illustrate the idea we start with a situation when
the metric is smooth, but not necessarily positively curved.

Proposition 8.1. LetL be a holomorphic line bundle over the compact Kähler manifoldX, and
let ψ be a smooth metric onL, not necessarily with positive curvature. Assume that

H(0,1)(X,KX + L) = 0

and
H0(X,KX + L) 6= 0.

Assume also thatV is a holomorphic vector field onX such that

V ⌋∂∂̄ψ = 0.

ThenV = 0.
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Proof. We follow the arguments in section 3. Letu be a global holomorphic section ofKX + L,
and put

v := V ⌋u.

Thenv is a holomorphic,L-valued,(n− 1, 0)-form and

∂∂̄ψ ∧ v = −(V ⌋∂∂̄ψ) ∧ u = 0.

Hence
∂̄∂ψv = −∂ψ ∂̄v = 0.

This implies that
∫

∂ψv ∧ ∂ψve−ψ = ±

∫

∂̄∂ψv ∧ ve−ψ = 0.

Hence∂ψv = 0. Moreover, our assumption thatH1 vanishes implies that thē∂-closed form
v ∧ ω = ∂̄w for some(n, 0)-formw. Therefore

∫

v ∧ v̄ ∧ ωe−ψ =

∫

v ∧ ∂̄we−ψ = 0.

Thusv andV must be zero which completes the proof. �

We shall next see that the same conclusion holds if we only assume that our metric is such that
e−ψ is locally integrable if we assume that the curvature current is semipositive.

Proposition 8.2. LetL be a holomorphic line bundle over the compact Kähler manifoldX, and
let ψ be a metric onL such thati∂∂̄ψ ≥ 0 ande−ψ is locally integrable. Assume that

H(0,1)(X,KX + L) = 0

and
H0(X,KX + L) 6= 0.

Assume also thatV is a holomorphic vector field onX such that

V ⌋∂∂̄ψ = 0.

ThenV = 0.

For the proof we need a technical lemma which is a little bit more delicate than it seems at
first glance. Recall that whenψ is smooth we have defined the expression∂ψv as

∂ψv = eψ∂e−ψv = ∂v − ∂ψ ∧ v.

More exactly, this means that these relations hold in any local trivialization.

As it stands, the first of these formulas does not make sense ifψ is allowed to be singular.
Therefore wedefine, for v smooth andψ singular

(8.1) ∂ψv = ∂v − ∂ψ ∧ v.

The next lemma says that the formula used above continues to hold in the singular case if we
assume thate−ψ is locally integrable and the weight is plurisubharmonic. (But not in general,
see below!)
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Lemma 8.3. Letψ be a plurisubharmonic function in an open set inCn such thate−ψ is locally
integrable. Letv be a smooth differential form such that∂ψv, as defined in 8.1, is also smooth.
Then

e−ψ∂ψv = ∂e−ψv

in the sense of currents.

Proof. What we need to check is that

v ∧ ∂e−ψ = −(v ∧ ∂ψ)e−ψ

if v and−v ∧ ∂ψ are smooth so that the expressions above are well defined. Since the statement
is purely local we can take a sequence of smooth plurisubharmonic functionsψν = ψ∗χν , where
χν is a sequence of radial approximations of the identity, thatdecrease toψ. The left hand side
is then the limit in the sense of currents of

−v ∧ ∂ψνe
−ψν

and the right hand side is the limit of

−v ∧ ∂ψe−ψν .

We have to prove that these two limits are equal.

Lemma 8.4. If ψ is plurisubharmonic, then∂ψ lies in Lp locally for anyp < 2. With ψν as
above∂ψν tends to∂ψ in Lploc for anyp < 2.

Proof. For any compactK, there is anǫ such thate−ǫψ is integrable overK, see [21]. Moreover,
since

i∂∂̄eǫψ ≥ ǫ2eǫψi∂ψ ∧ ∂̄ψ,

we see that|∂ψ|2eǫψ is locally integrable for anyǫ > 0. Therefore Hölder’s inequality implies
that|∂ψ|p is locally integrable for anyp < 2. Hence

∂ψν = ∂ψ ∗ χν

tend to∂ψ in Lploc. �

Let us now first assume thate−ψ is not only integrable locally, but lies inLq locally for some
q > 2. Then the conclusion of the lemma follows from the convergence of∂ψv in Lp and ofe−ψν

in Lq.
This means that under the assumption in the lemma we have proved that

v ∧ ∂e−tψ = −tv ∧ ∂ψe−tψ,

if t is between zero and one half. But both sides are real analyticfunctions oft with values in
the space of currents, fort < 1. Therefore the same formula holds for anyt less than one and we
only need to take limits (still in the space of currents) ast tends to one. �

Example: Letψ = log |z|2 in C and letv = z. Thev is smooth and∂ψv = 0. On the other hand

∂e−ψv = ∂
1

z̄
= δ0dz 6= 0.
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This shows that the assumption of local integrability ofe−ψ is essential. Otherwise the two sides
do not need to be equal even if they are well defined. �

Proof of Proposition 8.2: Given the lemma, this proceeds just like the proof of Proposition 8.1.
Takeu a holomorphic section ofKX +L, and letv = V ⌋u. As beforev is holomorphic and∂ψv
is also holomorphic. In particular, booth forms are smooth so we can apply the lemma. First

cn

∫

∂ψv ∧ ∂ψve−ψ =

∫

∂ψv ∧ ∂̄(e−ψv̄) =

∫

∂̄∂ψv ∧ v̄e−ψ = 0.

Hence∂ψv = 0. Then, invoking the Kähler formω, if v ∧ ω = ∂̄w,

cn−1

∫

v ∧ v̄ ∧ ωe−ψ = cn−1

∫

v ∧ ∂̄we−ψ = ±

∫

∂ψv ∧ w̄e−ψ = 0.

Hencev and thereforeV vanish. �

To have an example of the situation in Proposition 8.2, look at a smooth divisor,∆ defined
by a sections of a multipleλL of L. Let ψ = (1/λ) log |s|2. Thenψ satisfies the assumption
of Proposition 8.2 ifλ > 1. This means that any holomorphic vector field that is tangential to
∆ (in particular, vanishing on∆) must vanish, cf [28]. As reflected by the example above, this
is not true ifλ = 1. For an example of this take a fieldV on the Riemann sphere that vanishes
at zero and infinity. Concretely,z∂/∂z on C extends to such a field. HereL = −KP1 . The
cohomological assumptions of Proposition 8.2 are satisfied, but the conclusion fails ifψ is the
metric on−KP1 = O(2), that extendslog |z|2 on C. However, Song-Wang in the reference
above and also Berman, [3] have proved that the conclusion does hold on a Fano manifold for
L = −KX for an anticanonical divisor, provided the divisor is smooth, connected of multiplicity
one. This does not seem to follow from our propositions.

8.1. Meromorphic vector fields. In the next section we will need an extension of the results of
the previous section whenV is only known to be meromorphic. In this case we cannot expect
anything as precise as Proposition 8.2, even if the poles ofV lie outside of the support of∂∂̄ψ.
Let for exampleψ be a metric on the anticanonical bundle of the Riemann sphere(i e onO(2))
that equals

ψ′ =
2

N

N
∑

1

log |z − ai|
2

onC. Sinceψ′ grows like2 log |z|2 at infinity, infinity is outside the support of∂∂̄ψ. Let

V = Πn
1 (z − ai)

∂

∂z

onC; it extends to a meromorphic field with pole at infinity. Thus the conclusion of Proposition
8.2 fails even thoughe−pψ is integrable forp < N/2. On the other hand, we shall now see that
if L is ample, ande−kψ is integrable forall k, the proposition 8.2 holds even for a meromorphic
field.
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Proposition 8.5. LetL be an ample holomorphic line bundle over the compact Kähler manifold
X, and letψ be a metric onL such thati∂∂̄ψ ≥ 0 ande−kψ is locally integrable for allk > 0.
LetV be a meromorphic vector field onX such that

(8.2) V ⌋∂∂̄ψ = 0

outside the poles ofV . ThenV = 0.

Proof. SinceV is meromorphic, there is a holomorphic sections of some holomorphic line
bundle(S) such thatsV is holomorphic. Takingk sufficiently large we can, sinceL is ample,
find a nontrivial holomorphic sectionu′ ofKX+kL−(S). Letu = su′. Thenu is a holomorphic
section ofKX+kL, andv := V ⌋u is also holomorphic. As before, the condition 8.3 implies that
∂∂̄ψ ∧ v is zero outside of the polar divisor. Therefore it vanishes everywhere since∂∂̄ψ cannot
charge any divisor ife−kψ is integrable for allk. We can then repeat the proof of Proposition 8.2
word for word, if we replaceL by kL. �

9. A VARIANT OF THEOREM 1.2 FOR OTHER LINE BUNDLES THAN−KX

In this section we consider a general semipositive line bundle L overX, and the space of
holomorphic sectionsH0(X,KX +L). First we assume that this space is nontrivial, but later we
will even assume thatKX + L is base point free, i e that the elements ofH0(X,KX + L) have
no common zeroes. LetΩ be an open set inC; it will later be the strip{t; 0 < Re t < 1}, and let
φt for t in Ω be a subgeodesic (see section 2.2) in the space of metrics onL. As explained in the
beginning of section 3 we then get a trivial vector bundleE overΩ with fiberH0(X,KX + L)
with norm

‖u‖2t =

∫

X

|u|2e−φt .

In caseφt is smooth, the curvature of this metric is given by Theorem 3.1. From this formula we
see that the curvatureΘ is nonnegative, and if for someu in H0(X,KX + L), Θu = 0 at a point
t, thenvt is holomorphic. We can then follow the same route as before and define a vector field
V by

V ⌋u = vt.

In section 3 we looked at the case whenL = −KX , in which caseKX + L is trivial, so a
holomorphic section has no zeros, and it follows thatV is a holomorphic field. For generalL,
u will have zeros, soV is a priori only meromorphic. Ifφt is smooth and has strictly positive
curvature this is not a serious problem since

V ⌋∂∂̄φt = ∂̄φ̇t

soV is smooth and therefore must after all be holomorphic. Therefore the arguments of section
3 lead to the conclusion that ifE does not have strictly positive curvature then the change of
metric must be given by the flow of a holomorphic vector field; see [7].

If e g the subgeodesic is only bounded this argument does not work. Nevertheless we can
by adopting the methods of section 4 get the same conclusion if we assume that the curvature
is not only degenerate, but vanishes identically. Since thecurvature is always nonnegative the
assumtion amounts to saying that the trace of the curvature vanishes. This is the same as saying
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that the determinant ofE has zero curvature. Yet another way of saying the same thing is in
terms of the function

L(φt) := logVol(Bt),

whereBt is the unit ball inEt, and the volume Vol is computed with respect to some fixed
Lebesgue measure onH0(X,KX +L). It follows from Theorem 3.1 thatL(φt) is concave along
a subgeodesic and the curvature ofE is zero if and only ifL(φt) is affine.

Theorem 9.1.Assume thatKX + L is base point free and that

H1(X,KX + L) = 0.

Assume thatφt is a bounded subgeodesic in the space of metrics onL which is independent of
the imaginary part oft. Then, ifL(φt) is affine, there is a holomorphic vector fieldV onX with
flowFt such that

F ∗
t (∂∂̄φt) = ∂∂̄φ0.

Proof. As explained above the assumtion thatL be affine means that the curvature ofE vanishes
identically. Following the arguments of section 4, we get for eacht and eachu inH0(X,KX+L)
a meromorphic vectorfieldVt,u satisfying

Vt,u⌋∂∂̄φt = ∂̄φ̇t.

By Proposition 8.4 this means thatVt,u = Vt,u′ , so all the fields for different choice of sections are
the same. Since the poles ofVt,u are contained in the zero set ofu, and since we have assumed
that our bundle is base point free it follows that there are nopoles. The proof is then concluded
in the same way as in section 4. �

10. KÄHLER-RICCI SOLITONS

Let X be a Fano manifold. A Kähler form,ω, onX in c[−KX ] is said to be a Kähler-Ricci
soliton if it satisfies the equation

(10.1) Ric(ω) = ω + LV ω

for some holomorphic vector fieldV onX. HereLV is the Lie derivative ofω alongV which is
also equal toLReV + iLIm V . Taking real and imaginary parts we see that

LImV ω = 0

soω is invariant under the flow of the imaginary part ofV . Tian and Zhu, see [30] have proved a
generalization of the Bando-Mabuchi uniqueness theorem for solitons, saying that two solutions
to (10.1) are related via the flow of a holomorphic vector field. In this section we shall show that
this theorem also follows from Theorem 1.2. In a later paper,[31], Tian and Zhu also proved a
generalization of this result for two solitons that a prioriare associated to different vector fields.
The proof there builds on their earlier result. For completeness we also sketch the very beautiful
reduction of Tian-Zhu of the general problem to the problem for one fixed field, although we
only have minor simplifications for that part of the argument. (See also [20].)
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10.1. Solitons associated to one fixed field.As in the proof of Tian-Zhu our proof uses a gen-
eralization of the energy functionalE , that was introduced by Zhu in [32], which we shall now
describe.

Let first
H = {φ; metric on −KX , i∂∂̄φ ≥ 0}.

In the sequel we writeωφ for i∂∂̄φ if φ lies inH. If V is any holomorphic vector field onX and
φ lies inH, we will define a functionhφ by

V ⌋ωφ = i∂̄hφ.

This definition is meaningful since the left hand side is clearly a ∂̄-closed(0, 1)-form, and there-
fore ∂̄-exact on a Fano manifold. Of course,hφ is only determined up to a constant, and we will
need to choose this constant in a coherent way. Here is one wayto do this.

Definition 1. Letφ be a smooth metric on−KX , and let as in section 2,e−φ be the corresponding
volume form onX. Then we define, forV an arbitrary holomorphic vector field onX, the
functionhφV by

(10.2) LV (e
−φ) = −hφV e

−φ,

whereLV is the Lie derivative.

Proposition 10.1.The functionhφV defined in 10.2 has the following properties:

1. V ⌋i∂∂̄φ = i∂̄hφ,

2.
∫

hφV e
−φ = 0,

3. hφV+V ′ = hφV + hφV ′,

and ifχ is a function

4. hφ+χV = hφV + V (χ).

Moreover,hφV is real valued if and only ifωφ = i∂∂̄φ is invariant under the flow ofImV .

Proof. Property 2 follows since the integral of a Lie derivative of avolume form always van-
ishes, 3 is direct from the formula for the Lie derivative and4 follows sincehφV is a logarithmic
derivative.

To check 1, choose local coordinateszj and a local representative ofφ so that

e−φ = cne
−φjdzj ∧ dz̄j .

Let Ft(z) be the flow ofV . Then for smallt

F ∗
t (e

−φ) = cne
−φj◦Ft |J(t, z)|2dzj ∧ dz̄j ,

where the JacobianJ is holomorphic int andz jointly. Then

hφV =
∂

∂t
(φj ◦ Ft − log |J(t, z)|2)|t=0 = V (φj) +R.

HereR is holomorphic inz, so

i∂̄hφV = i∂̄V (φj) = V ⌋i∂∂̄φ.
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For the final claim, note that 1 implies that

2ImV ⌋i∂∂̄φ = dRehφ + dcImhφ.

HenceLIm V ω
φ = 0 if and only if the imaginary part ofhφV is constant. By 2, this constant must

be zero. �

Remark5. Since 1 and 2 of Proposition 10.1 determinehφV uniquely, we could also have defined
hφV by properties 1 and 2. This is the route taken in [30] and [31].We have chosen to start instead
from 10.2 since it seems to simplify the argument somewhat and also gives 3 and 4 for free.

Next we let

HV = {φ ∈ HX ;LImV i∂∂̄φ = 0}.

We can now define Zhu’s energy functional by, ifφt is a smooth curve inHV ,

(10.3)
d

dt
EZ,a(φt) := −

∫

φ̇t(i∂∂̄φt)
neah

φt

wherea is some real constant. In the sequel we will suppress the subscript a, and in the end we
will choosea = 1, but it seems useful to include an arbitrarya in the discussion anyway. Of
course we need to prove thatEZ is well defined, cf [32]. This and other basic properties ofEZ
are summarized in the next propositions.

Proposition 10.2.Letφs,t be a smoothly parametrized family of metrics inHV . Then

d

ds

∫

dφt,s
dt

(i∂∂̄φt,s)
neah

φt,s

=

∫

(
d2φt,s
dtds

− 〈∂̄φ̇t, ∂̄φ̇s〉)(i∂∂̄φt,s)
neah

φt,s

.

The bracket〈∂̄φ̇t, ∂̄φ̇s〉 stands here for the real scalar product of the two forms with respect to
the metrici∂∂̄φt,s, i e the real part of the complex scalar product. Since the right hand side is
therefore symmetric int ands it follows thatEZ is well defined and puttingt = s that

Proposition 10.3.
d2

dt2
EZ = −

∫

(φ̈tt − |∂̄φ̇t|
2)(i∂∂̄φt)

neah
φt
.

Moreover, takingφt,s = φs + t we see that
∫

(i∂∂̄φ)neah
φ

is constant onHV . This is of course where the specific choice ofhφ is important. Proposition
10.2 is essentially contained in Zhu’s paper but formulateddifferently there and we will give a
proof in an appendix.

Proposition 10.4.EZ is affine along theC1,1-geodesic connecting two smooth metrics inHV .
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Proof. It is well known that

(φ̈tt − |∂̄φ̇t|
2)(i∂∂̄φt)

n ∧ idt ∧ dt̄ = (1/n)(i∂∂̄φ)n+1),

where(i∂∂̄φ)n+1 is the Monge-Ampere measure ofφ with respect to all variables onΩ × X.
The formula in Proposition 10.3 can therefore be interpreted as saying that

∂∂̄EZ(φt) = (−1/n)p∗((i∂∂̄φ)
n+1eah

φt
).

This was proved assuming thatφ is smooth so we need to regularizeφ if it is only of classC1,1.
Moreover, we need regularize so that we stay in the spaceHV . This is actually achieved by
Chen’s proof of theC1,1-regularity of geodesics. There the geodesic is obtained asthe limit
of smoothǫ-geodesics that are solutions of a strictly elliptic equation. Theseǫ-geodesics are
invariant underImV if the boundary values are.

It is well known that the Monge-Ampere measure converges weakly under decreasing limits
of bounded plurisubharmonic functions. Moreover it is clear from our formula forhφt thathφt

converges uniformly under limits inC1. Therefore the formula holds also ifφ is only inC1,1.
Since the Monge-Ampere measure of a (generalized) geodesicvanishes the claim follows. �

Remark6. It is also true thatEZ is affine along anyC1-geodesic inHV . This can be proved by
approximating aC1 -geodesic inHV by smooth curves inHV , but we omit the details.

Let us now see how the uniqueness theorem of Tian-Zhu followsfrom Theorem 1.2 and Propo-
sition 10.2. Letω0 = i∂∂̄φ0 andω1 = i∂∂̄φ1 be two (smooth) solutions to equation 10.1. As
noted aboveφj lie in HV . To avoid technical complications we will resort to Chen’s theorem and
connectφ0 andφ1 with aC1,1-geodesic,φt. By uniqueness of geodesics it follows that for allt
φt lies inHV . Since

LV i∂∂̄φ = d(V ⌋i∂∂̄φ) = di∂̄hφ = i∂∂̄hφ,

we can rewrite equation 10.1 as

(10.4) (i∂∂̄φ)neh
φ

= Ce−φ

for some constantC. ChooseC0 so that

C0

∫

(i∂∂̄φ)neh
φ

= 1.

Then (10.4) implies that

C0(i∂∂̄φ)
neh

φ

=
e−φ
∫

e−φ
.

Define

FZ(φ) = log

∫

e−φ − C0EZ(φ).

Any solution of equation 10.4 inHV is a critical point ofFZ. SinceEZ is affine along our
geodesic we see by Theorem 1.1 thatFZ(φt) is convex int. If φ0 andφ1 are critical points
FZ(φt) and hence

log

∫

e−φt
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are also affine int. Theorem 1.2 then implies that there is a holomorphic vectorfield onX with
time one flowF such thatF ∗(ω1) = ω0.

10.2. Solitons associated to different fields.In this section we sketch the arguments of Tian-
Zhu from [31] to prove that two solutions to the equations

(10.5) Ric(ω0) = ω0 + LV ω0

and

(10.6) Ric(ω1) = ω1 + LWω1,

whereV andW are two holomorphic vector fields onX, are also connected via an automorphism
in Aut0(X), the connected component of the identity in the automorphism group ofX. As we
have seenImV generates a flow of isometries forω0. This flow is contained in a maximal
compact subgroupK0 of Aut0(X). In the same way, the flow ofImW is contained in another
maximal compact subgroup,K1. By a fundamental theorem of Iwasawa, [22],K0 andK1 are
conjugate by an automorphismg in Aut0. This means that after a preliminary automorphism
applied to one of the equations, we may assume thatK0 = K1 =: K. Tian-Zhu then show that
this implies thatV =W .

To explain how this is done we go back to the construction of the functionhφ in the previ-
ous subsection, with basic properties described in Proposition 10.1 . Notice that property 4 of
Proposition 10.1 means that ifφ = φt depends on a real parameter, then(d/dt)hφtV = V (φ̇t).
Following [31] we now define a functional

f(φ, V ) :=

∫

eh
φ

V (i∂∂̄φ)n,

for φ in H andV any holomorphic vector field onX.

Proposition 10.5.f(φ, V ) does not depend onφ.

Proof. Takeφ = φt and differentiate with respect tot:

d

dt
f(φt, V ) =

∫

V (φ̇t)e
hφ
V (i∂∂̄φ)n + n

∫

eh
φ

V i∂∂̄φ̇t ∧ (i∂∂̄φ)n−1

But, since contraction withV is an antiderivation,

V (φ̇t)(i∂∂̄φ)
n = ni∂φ̇t ∧ ∂̄h

φ
V ∧ (i∂∂̄φ)n−1.

Inserting this and integrating by parts we see that the derivative off with respect tot vanishes,
sof does not depend onφ. �

In the sequel we writef(φ, V ) = f(V ).

Proposition 10.6.Suppose the holomorphic vector fieldV admits a Kähler-Ricci soliton, i e that
there is a solutionω to the equation

Ric(ω) = ω + LV (ω).

ThenV is a critical point off .
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Proof. By property 3 of Proposition 10.4 the derivative off at the pointV in the directionU is
∫

hφUe
hφ
V (i∂∂̄φ)n.

Here we can choose anyφ in H by Proposition 10.5. If we takei∂∂̄φ to be aV -soliton, then
eh

φ

V (i∂∂̄φ)n = Ce−φ by 10.4. Hence the derivative is zero for anyU by property 2 of proposition
10.4 �

Recall thatK is a compact subgroup ofAut0(X) which contains the flows of bothImV and
ImW . Let fK be the restriction off to the space of all vector fields that have this property, i e
whose imaginary part lie in the Lie algebra ofK. Chooseω = ωφ to beK-invariant; this can be
achieved by taking averages with respect to the Haar measureof K. Write

fK(V ) =

∫

eh
φ
V ωn.

By Proposition 10.4 allhφV are real valued ifV is such a field andi∂∂̄φ is K-invariant. Since
moreoverhφV is linear inV by property 3 of Proposition 10.1, this formula shows thatfK is
strictly convex. ThereforefK can have at most one critical point. It follows immediately that
there is at most one vector fieldV with Im V in the Lie algebra ofK that admits a soliton. In
other words,V andW from the beginning of this subsection must be equal (after the preliminary
reduction). By subsection 10.1 we then arrive at the following theorem.

Theorem 10.7.(Tian-Zhu,[30], [31]) LetX be a Fano manifold and letω0 andω1 be solutions
of 10.4 and 10.5. Then there is an automorphismg in Aut0(X) such thatg∗(ω1) = ω0.

11. APPENDIX

Here we will prove Proposition 10.1. We suppress the dependence ofφ on t and s in the
formulas and use subscripts only to denote differentiationwith respect to these variables.

d

ds

∫

φ̇t(i∂∂̄φ)
neah

φ

=

∫

φ̈t,s(i∂∂̄φ)
neah

φ

+

+n

∫

φ̇t(i∂∂̄φ̇s) ∧ (i∂∂̄φ)n−1eah
φ

+ a

∫

φ̇tV (φ̇s) ∧ (i∂∂̄φ)neah
φ

=: I + II + III.

Integrating by parts we get

II = −n

∫

i∂φ̇t ∧ ∂̄φ̇s ∧ (i∂∂̄φ)n−1eah
φ

− an

∫

iφ̇t∂h
φ ∧ ∂̄φ̇s ∧ (i∂∂̄φ)n−1eah

φ

.

Recall thati∂̄hφ = V ⌋i∂∂̄φ so that we have−i∂hφ = V̄ ⌋i∂∂̄φ. Since contraction with a vector
field is an antiderivation we get

0 = V̄ ⌋(∂̄φ̇s ∧ (i∂∂̄φ)n) = V (φ̇s)(i∂∂̄φ)
n + n∂̄φ̇s ∧ i∂h

φ ∧ (i∂∂̄φ)n−1.

Inserting this above we see that

II = −n

∫

i∂φ̇t ∧ ∂̄φ̇s ∧ (i∂∂̄φ)n−1eah
φ

− a

∫

φ̇tV (φ̇s)(i∂∂̄φ)
neah

φ

.
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Hence

d

ds

∫

φ̇t(i∂∂̄φ)
neah

φ

=

∫

φ̈t,s(i∂∂̄φ)
neah

φ

− n

∫

i∂φ̇t ∧ ∂̄φ̇s ∧ (i∂∂̄φ)n−1eah
φ

+

2ia

∫

φ̇tImV (φ̇s) ∧ (i∂∂̄φ)neah
φ

.

But the left hand side of this equality is real so the last termmust be zero (which is also clear
sinceφ is invariant under the flow ofImV ). We are then left with the formula in Proposition
10.1
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