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A BRUNN-MINKOWSKI TYPE INEQUALITY FOR FANO MANIFOLDS AND
SOME UNIQUENESS THEOREMS IN KAHLER GEOMETRY.

BO BERNDTSSON

ABSTRACT. For¢ a metric on the anticanonical bundleK x, of a Fano manifold{ we consider
the volume ofX
/ e ?.

X
In earlier papers we have proved that the logarithm of thamel is concave along geodesics in
the space of positively curved metrics etk x. Our main result here is that the concavity is strict
unless the geodesic comes from the flow of a holomorphic véield on X, even with very low
regularity assumptions on the geodesic. As a consequengetvaesimplified proof of the Bando-
Mabuchi uniqueness theorem for Kéhler - Einstein metricgyeAeralization of this theorem to
‘twisted’ Kahler-Einstein metrics and some classes of Ificdais that satisfy weaker hypotheses
than being Fano is also given. We moreover discuss a geraiah of the main result to other
bundles than- Kx, and finally use the same method to give a new proof of the émeaf Tian
and Zhu on unigueness of Kéhler-Ricci solitons.

1. INTRODUCTION

Let X be ann-dimensional projective manifold with seminegative canahbundle and let
2 be a domain in the complex plane. We consider cutves ¢;, with t in 2, of metrics on
— K x that have plurisubharmonic variation so th'aﬁt,xgb > 0 ( see section 2 for notational
conventions). Then solves the homogenous Monge-Ampére equation if

(1.1) (100, x ¢)"t* = 0.

Such curves are called (generalized) geodesics| see [Rédmrigins of this.

By a fundamental theorem of Chen, [10], we can for any gitigdefined on the boundary of
2, smooth with nonnegative curvature ahfor ¢ fixed onof?, find a solution of (1.1) withp,
as boundary values. This solution does in general not nebd gmooth (see [13],[23], [11]),
but Chen’s theorem asserts that we can find a solution thaalhasixed complex derivatives
bounded, i €0; x ¢ is bounded onY x . The solution equals the supremum (or maximum)
of all subsolutions, i e all metrics with semipositive curva that are dominated hy, on the
boundary. Chen’s proof is based on some of the methods fraris Yaoof of the Calabi conjec-
ture, so it is not so easy, but it is worth pointing out thatelxestence of a generalized solution
that is only bounded is much easier, see section 2.

On the other hand, if we do assume thas smooth andddx ¢ > 0 on X for anyt fixed, then

(100; x §)" T = nc(¢)(i00x )™ Aidt A dt
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with
P 500,
A9) = Gigr ~ 19 hoaxs:

where the norm in the last term is the norm with respect to thhlé& metriciodx¢. Thus
equation 1.1 is then equivalenttp) = 0.

The case whef2 = {t;0 < Ret < 1} is a strip is of particular interest. If the boundary
data are independent bfh ¢ then so is the solution to 1.1. A famous observation of Semmes
[27] and Donaldson| [14] is that the equatidi®) = 0 then is the equation for a geodesic in the
space of Kahler potentials. Chen’s theorem taknostimplies that any two points in the space
of Kéhler potentials can be joined by a geodesic, the prdwsing that we might not be able to
keep smoothness or strict positivity along all of the cuiMeis problem causes some difficulties
in applications, one of which we will address in this paper.

The next theorem is a direct consequence of the results,ifBJ6]

Theorem 1.1. Assume that- Kx > 0 in the sense that it has a smooth metric of semipositive
curvature. Let lety; be a curve of (possibly singular) metrics eri y such that

100, x¢ >0

in the sense of currents. Then

F(t) = —log / .

X
is subharmonic if2. In particular, if ¢; does not depend on the imaginary partaf is convex.

Here we interpret the integral ovérin the following way. For any choice of local coordinates
2/ in some covering of{’ by coordinate neighbourhood§, the metrice, is represented by a
local functiong?. The volume form

cne %dzI A dz,

wherec, = i"” is a unimodular constant chosen to make the form positiiegdispendent of the
choice of local coordinates. We denote this volume forma 1, see section 2.

The results in[[6] and [8] deal with more general line bundles/er X and also more general
fibrations thanX x ), see section 3. A special case is the trivial vector budi@ver Q) with
fiber HY(X, Kx + L) with the L?-metric

Jull2 = /X e,

see section 2. The main result is then a formula for the cureatf £ with the L?-metric. In this
paper we study primarily the simplest special cdse; —Ky. ThenKx + L is trivial SOF is

a line bundle and Theorem 1.1 says that this line bundle hasegative curvature. In section 9
we shall be able to extend part of the results we now desaibgotre general line bundles than
—Kx. Incase—Kyx > 0, so thatX is Fano, the result is a simple consequence of Hérmander’s
L?-estimates, se€][7] for a very short proof in this case.
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Theorem 1.1 is formally analogous to the Brunn-Minkowsladoality for the volumes of
convex sets, and even more to its functional version, Pr@kapeorem, [26]. Prekopa’s theorem
states that ifs is a convex function oiR™*!, then

f(t) = —log/n e 9t

is convex. The complex counterpart of this is that we comsadeomplex manifoldX with a
family of volume formsy,. In local coordinates’ the volume form can be written as above

e = cpe~%dz? Ad2?, and if ., is globally well definedy! are then the local representatives of
a metric,¢;, on — K x. Convexity in Prekopa’s theorem then corresponds to pesitir at least
semipositive, curvature af;, so X must be Fano, or its canonical bundle must at least have sem-
inegative curvature (in some sensek y pseudoeffective would be the minimal requirement).
The assumption in Prekopa’s theorem that the weight is comith respect tor andt together
then corresponds to the assumptions in Theorem 1.1.

If K is acompact convex set IR"*! we can take) to be equal to 0 i< and+oo outside of
K. Prekopa’s theorem then implies the Brunn-Minkowski tle@orsaying that the logarithm of
the volumes of.-dimensional slicesks; of convex sets are concave; concretely

(1.2) |K(t+s)/2|2 < K| K|

The Brunn-Minkowski theorem has an important addendum mtiéscribes the case of equal-
ity : If equality holds in (1.2) then all the slicds; and K, are translates of each other

Ki=K;+ (t—s)v

wherev is some vector iR"™. A little bit artificially we can formulate this as saying thae
move from one slice to another via the flow of a constant vefe.

Remarkl. It follows that from (1.2) and the natural homogenity prdpeer of Lebesgue measure
that| K|/, is also concave. This (‘additive version’) is perhaps tfestitommon formulation

of the Brunn-Minkowski inequalities, but the logarithmar fnultiplicative) version above works
better for weighted volumes and in the complex setting. Reradditive version conditions for
equality are more liberal; theR; may change not only by translation but also by dilation (see
[17]), but equality in the multiplicative case excludesatibn.

A natural question is then if one can draw a similar conclusiothe complex setting de-
scribed above. In [7] we proved that this is indeed s¢ i§ known to be smooth and strictly
plurisubharmonic orX for ¢ fixed. The main result of this paper is the extension of thiess
regular situations. We keep the same assumptions as indinebd.

Theorem 1.2. Assume that/®!(X) = 0, and that the curve of metries is independent of the
imaginary part oft. Assume moreover that the metrigsare uniformly bounded in the sense
that for some smooth metric 6nK , v,

o — | < C.

Then, if the functioF in Theorem 1.1 is affine if?, there is a holomorphic vector field on X
with flow F} such that - B
F}(00¢:) = 00¢y.



The assumption thatf®!(X) = 0 enters into the proof at several places, but | do not know
if it is necessary for the theorem to hold. Notice howevet thés automatically satisfied if
X is Fano. Then-Kx > 0so H*'(X) = H™'(X,—Kx) = 0 by Kodaira vanishing. More
generally, if— K x is supposed to be 'bigh™!(X, — K y) also vanishes by the Demailly-Nadel
vanishing theorem.

There should also be a version of the theorem without thengstson thaty; be independent
of the imaginary part of, and then assuming th& be harmonic instead of affine. The proof
then seems to require more regularity assumptions. Forlisitypve therefore treat only the
case whem;, is independent ofim ¢, which anyway seems to be the most useful in applications.

This theorem is useful in view of the discussion above on thssible lack of regularity of
geodesics. As we shall see in section 2 the existence of aalzieel geodesic satisfying the
boundedness assumption in Theorem 1.2 is almost triviag @otivation for the theorem is to
give a new proof of the Bando-Mabuchi uniqueness theorerddbter-Einstein metrics on Fano
manifolds. Recall that a metrig,, = ¢00v, with ¢ a metric on—Kx solves the Kahler-Einstein
equation if

RiC(u)w) = Wy
or equivalently if for some positive
(1.3) e = a(ido)",

where we use the convention above to interprétas a volume form. By a celebrated theorem
of Bando and Mabuchi (see section 5), any two Kahler-Einstegtricsiodp, andidde, are
related via the time-one flow of a holomorphic vector fieldséttion 5 we shall give a proof of
this fact by joiningp, and¢, by a geodesic and applying Theorem 1.2. This proof also stuats
the uniqueness theorem of Bando-Mabuchi holds also fotieakiof (1.3) that are only assumed
to be bounded. The original proof of Bando and Mabuchi usedatamicity properties of the
Mabuchi K-energy ([25]) along curves obtained from solvangontinuous family of Monge-
Ampere equations, and thus seems to require higher reguld@elow we will also consider
'twisted’ Kéhler-Einstein equations, whose solutions meger smooth, and then this difference
between the proofs is perhaps more important.

It should be noted that a similar proof of the Bando-Mabubkorem has already been given
by Berman, [[2]. The difference between his proof and ourbas he uses the weaker version
of Theorem 1.2 from(]7]. He then needs to prove that the geoggEging two Kahler-Einstein
metrics is in fact smooth, which we do not need, and we alsaabhe use of Chen’s theorem
since we only need the existence of a bounded geodesic.

A minimal assumption in Theorem 1.2 would be thatt be integrable, instead of bounded.
| do not know if the theorem holds in this generality, but ictsen 6 we will consider an inter-
mediate situation wherg, = 7, + v, with 7, bounded and such that~" is integrable, so that
the singularities don’t change with Under various positivity assumptions we are then able to
prove a version of Theorem 1.2.

Apart from making the problem technically simpler, thisraxassumption that, = 7, + ¢
also introduces an additional structure, which seemsastirg in itself. In section 7 we use
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it to give a generalization of the Bando-Mabuchi theoremedain 'twisted’ K&hler-Einstein
equations,

(1.4) Riqw) = w + 0

considered in[[29],[3] and [15]. Hergis a fixed positive(1, 1)-current, that may e g be the
current of integration on a kit divisor. The conclusion of dieorem is that in (1.4) we have
uniqueness modulo the time one flow of a vector field that fixed/e shall also see, in section
8, that in many cases, this means that we in fact have absolidgaeness.

After this, in section 9, we briefly discuss a variant of Theeorl.2 for more general line
bundles,L, than— K x. We then replace the functional

F(t) = —1og/e_‘z’t,

by a variant, introduced in [7], of Donaldson’sfunctional, [16]. Finally, in section 10, follow-
ing a suggestion of Yanir Rubinstein, we show how Theorenals@ implies a theorem of Tian
and Zhu, [[30], on uniqueness for Kahler-Ricci solitons.sTtmas also been noted independently
by W He, [20].

Another paper that is very much related to this one is [4], leynBan -Boucksom-Gued)-
Zeriahi. There is introduced a variational approach to MeAgpere equations and Kahler-
Einstein equations in a nonsmooth setting and a uniqguehesseim a la Bando-Mabuchi is
proved in the absence of holomorphic vector fields, usindicoaus geodesics. After the first
version of this paper was written, the results have also geraralized to some singular varieties
in [5]. I would like to thank all of these authors for helpfukdussions, and Robert Berman in
particular for proposing the generalized Bando-Mabuchotbm in section 7. Finally | am very
grateful to two referees for valuable comments, in paréicédr a suggestion how to prove that
the vector field in Theorem 1.2 is time independent.

2. PRELIMINARIES

2.1. Notation. Let L be a line bundle over a complex manifald, and letU; be a covering of
the manifold by open sets over whichis locally trivial. A section ofL is then represented by
a collection of complex valued functions on U; that are related by the transition functions of
the bundles; = g;,sx. A metric onL is given by a collection of realvalued functionson U,
related so that
|sj[7e™ =1 |s]Pe™ = [s[}

is globally well defined. We will writep for the collectiony’, and refer tap as the metric ord,
although it might be more appropriate to catl’ the metric. (Some authors callthe 'weight’
of the metric.) We say that is positive,L > 0, if ¢ can be chosen smooth with curvatud@¢
strictly positive, and that. is semipositive,. > 0, if it has a smooth metric of semipositive
curvature.

A metric ¢ on L induces ar.2-metric on the adjoint bundIl& x + L. A sectionu of Kx + L
can be written locally as

u=dz® s
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wheredz = dz; A ...dz, for some choice of local coordinates an a section of.. We let
ulPe™? := cpdz A dz|s]3;

it is a volume form onX. The L?-norm ofu is

Jull? = | Juee.
X

Note that theL? norm depends only on the metricon L and does not involve any choice of
metric on the manifoldX .

In this paper we will be mainly interested in the case wlher — Ky is the anticanonical
bundle. Then the adjoint bundl€y + L is trivial and is canonically isomorphic t& x C if we
have chosen an isomorphism betwdeand— K x. This bundle then has a canonical trivialising
sectionu identically equal to 1. With the notation above

e A
X X

This means explicitly that we interpret the volume forn? as
Az NdZ e %

wheree ¥ = |(d27)~1]7 is the local representative of the metric for the frame dieiieed by the
local coordinates. Notice that this is consistent with thieventions indicated in the introduction.

2.2. Bounded geodesicsWe now consider curves — ¢, of metrics on the line bundlé..
Heret is a complex parameter but we shall (almost) only look at esithat do not depend
on the imaginary part of. We say thatp, is a subgeodesic if; is upper semicontinuous and
i00; x¢; > 0, so that local representatives are plurisubharmonic veispect ta and X jointly.
We say thaty; is bounded if

oy — | < C
for some constant’ and some (hence any) smooth metric on For bounded geodesics the
complex Monge-Ampere operator is well defined and we saydhata (generalized) geodesic
if
(iaét,xét)”“ == O

Let ¢ and¢; be two bounded metrics ahover X satisfyingidds,; > 0. We claim that there
is a bounded geodesig defined for the real part afbetween 0 and 1, such that

tl_ifé,ll ¢r = Po,1
uniformly on X. The curvep, is defined by
(2.1) ¢r = sup{¢r}
where the supremum is taken over all plurisubharmaniwith
lim ), < ¢o1.

t—0,1



To prove thatp; defined in this way has the desired properties we first cotistrbarrier
Xt = max(¢y — ARet, ¢, + A(Ret — 1)).

Clearlyy is plurisubharmonic and has the right boundary valueksig sufficiently large. There-
fore the supremum in (2.1) is the same if we restrict it/tthat are larger thar. For suchy
the onesided derivative at 0 is larger thad and the onesided derivative at 1 is smaller tan
Since we may moreover assume tfias independent of the imaginary partiof) is convex in
t so the derivative with respect tancreases, and must therefore lie betweehand A. Hence
¢, satisfies

¢0 — ARet < (bt < ¢0 + ARet

and a similar estimate at 1. Thyghas the right boundary values uniformly. In addition, the up
per semicontinuous regularizatigi of ¢, must satisfy the same estimate. Si¢as plurisub-
harmonic it belongs to the class of competitorsdpand must therefore coincide with, so¢,
is plurisubharmonic. That finally; solves the homogenuous Monge-Ampere equation follows
from the fact that it is maximal with given boundary valuese & g[[19], Thm 2.20.

Notice that as a byproduct of the proof we have seen that tbdegéc joining two bounded
metrics is uniformly Lipschitz irt. This fact will be very useful later on.

2.3. Approximation of metrics and subgeodesics.In the proofs we will need to approximate
our metrics that are only bounded, and sometimes not evemdeols by smooth metrics. Since
we do not want to lose too much of the positivity of curvaturs tauses some complications.
An extensive treatment of these matters can be found in H&je we will need only the simplest

part of this theory and we also refer ta [9] for an elementaioop We collect the approximation

results that we need in a proposition.

Proposition 2.1. Let M be a complex manifold with a positive hermitean fasprand let L be

a complex line bundle oveY!. Let¢ be a bounded metric oh such thati9d¢ > 0. Let M’ be

a relatively compact domain i/ (which could be)M itself if M is compact). Then there is a
strictly decreasing sequengg of smooth metrics o over M’ with limit ¢, such that

Z&é(bj > —€;W,
wheree; > 0 tends to zero. Moreover:
(1) If L > 0 this result holds without the assumption tigalbe bounded
and

(2) If L > 0, ¢; can be chosen so thaldg; > 0, and the result holds without the assumption
that ¢ be bounded.

Proof. This is basically the main result inl[9], and for the convewe of the reader we translate
to the language of-plurisubharmonic functions used in that paper. {.dte a smooth metric on
L and lety := i00+. To any metrigp on L, we associate the functian:= ¢ — . The condition
i00¢ > 0 then says thap is y-plurisubharmonic, i e that

i00p > —.

Similarily, i00¢ > 0 means thaiddy > —v, andidd¢ > —ew means that is (y + ew)-
plurisubharmonic. The first statement of the propositiofaispecial case of) Theorem 2 in [9].
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For statement (2) concerning positive bundles, we can asshaty > 0. Chooseyp; as in

the first part, and lep; := ¢, — 1. Since¢; are smooth and decrease, we may assume these
functions are negative. Then,df decrease to zerdl — d;)¢,; decrease anthd(1 — 6;)p; >
—(1—-0,)(y+ew) > —, if §; goes to zero sufficiently slowly. Thyscan be approximated with

a sequence of metrics of strictly positive curvature: i not bounded, we apply this argument to
o? 1= max(p, —A), if A > 0. Foreachd we geta sequencc;a;.4 of strictly v-plurisubharmonic

functions that decrease @'. Then take a sequencg, that increases to infinity and let

Pv = @ﬁjya
wherej, is chosen inductively so that
Ay A,
90]'1/4:1 < 90.711 :

This is possible by Dini’'s lemma sinq&f”“ is a decreasing sequence of continuous functions
whose limit,p4»+! is strictly smaller than the right hand side. This argumésd proves (1). O

Besides using Proposition 2.1 to approximate metrics onexbundle overX, we can also
apply it to the manifoldS x X, S = {¢;0 < Ret < 1}, to approximate (sub)geodesics over
any relatively compact subdomain 8f In case the (sub)geodesic depends onlyren we can
then obtain smooth approximants that also depend only«dn To see this, we replace by an
annulus by a conformal change of coordinates and take averages of over the circle.

At one point we also wish to treat a bundle that is not even gesitive, but only effective. It
then has a global holomorphic sectienand the singular metric we are interested igg|s|?, or
some positive multiple of it. We then Igtbe any smooth metric on the bundle and approximate

by
¢” = log(|s|* + v 'e?).

Explicit computation shows thatd¢” > —Cw whereC' is some fixed constant. Moreover,
outside any fixed neighbourhood of the zerodivisos,of

i00¢” > —e, w

with ¢, tending to zero. This weak approximation will be enough far purposes.

Let us finally note that we know from the barrier constructiothe previous subsection that
a bounded geodesit; has uniformly bounded-derivative,¢,. A similar argument shows that
an approximating sequengé, decreasing to a bounded geodesi@also can be chosen so that
it has uniformly bounded-derivative. For this it is enough to replagg by

max(¢;, max(¢g — ARet, o7 + A(Ret — 1))).

This function still decreases toand has derivative bounded betwetand—A. It is not smooth
because of the max construction, but we can replace the roaximy a smoothed out version of
max. The upshot of this is that we will (see lemma 4.1) alsadgetinated convergence almost
everywhere for the time derivatives of the approximatingsace.
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2.4. Monge-Ampere energy. In this subsection we collect some basic properties of thedde
Ampere energy. These facts are well known at least in the 8muase; our purpose here is to
check that they still hold for bounded curves, and we follbe arguments in [2]. Leb, and¢,

be two bounded metrics on a line bundlesatisfyingidds; > 0. Then their relative Monge-
Ampere energy

n

2.2) E(on,éu) = (1/n) [ (61 = 60) D (i000n)* (000"

0

is well defined by basic pluripotential theory. (We will clygrthe normalization later by dividing
by the volume ofL..) It has the property that if, depends smoothly oh then

(d/dt)E (b, o) = /X 61(i009,)",

and&(¢o, ¢o) = 0; these properties are sometimes taken as an alternativetioefiof £. We
could also write, ifp; is just a bounded subgeodesic,

n

E(dr, o) = pul(dr — 00)) D (100, x¢0)* A (i0D)" ),

0

wherep is the natural projection fromX x Q to €2, andp, is the pushforward of a current. Since
the pushforward commutes with differentiation, the lastrfola shows that

100,E (¢1, d0) = (1/n)p. (100, x )" — (100o)" ) = (1/n)p.((100; x b:)" ).
Using the definition of:(¢) from the introduction we can also write this as

X

At any rate we see thaf is convex along bounded subgeodesics and affine along bdunde
geodesics. It also follows (most easily from the last formyuhat on an affine line;, =
¢o + t(p1 — ¢o), € is concavewith derivative

(@008 (0 60) = [ (6n = én)G0000)"
(use (2.2)). The concavity shows that
2.3) 1.0 < [ (61— 00)(i0000)"
X

If we replacep; by ¢, in (2.3), with¢, a bounded subgeodesic we see by monotone convergence
that the derivative of from the right satisfies

(2.4) (d/dt)—o,+E(Pr, Po) S/X(%)Jr(iaa%)n-

Similarily, the derivative at = 1 from the left satisfies

(2.5) (d/dt)i=1,—E(¢y, Po) Z/X(él)—(iaa%)n-
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We will have use for these formulas in section 5.

3. THE SMOOTH CASE

In this section we lef, be a holomorphic line bundle ovéf and(2 be a smoothly bounded
open set inC. Fix once and for all one Ké&hler form oN, w. We consider the trivial vector
bundleE over () with fiber H°(X, Kx + L). In this section we let throughodt be a smooth
curve of metrics orl, with ¢ a complex parameter. For any fixeds, induces an.?-norm on
H°(X, Kx + L) as described in the previous section

2 = /X uPe?,

and ag varies we get an hermitian metric on the vector buridle

We now recall a formula for the curvature bfwith this metric from[[6],[8]. Let for each in
Q

0% = e?0e % =0 — O, N

We let this operator act oh-valued formsyp, of bidegregn — 1,0), and we interpret it locally
in terms of some local trivialization. It can be easily chedkhat it is globally well defined.

Let v be anL-valued(n — 1, 0)-form and writeax = v A w, wherew is the fixed Kéhler form
on X. Then (modulo a sign) )

Oty = 05,

the adjoint of thed-operator for the metrig,. In particular this shows again that the operattr
is well defined onl-valued forms.

This also means that for amywe can solve the equation

0% v =,

if n is an L-valued(n, 0)-form that is orthogonal to the space of holomorphiwvalued forms
(see remark 2 below). Moreover by choosimg= v A w orthogonal to the kernel cﬁ;;t we can
assume that is 0-closed, so thabv A w = 0.( Hence, with this choicgv is a primitive form.)
If, as we assume from now, the cohomology-!(X, L) = 0, the J-operator is surjective on

0-closed forms, so the adjoint is injective, am@s uniquely determined by.

Remark2. The reason we can always solve this equatiort famd¢ fixed is that the)-operator
from L-valued(n, 0)-forms to(n, 1)-forms onX has closed range. This implies that the adjoint
operato@;t also has closed range and that its range is equal to the ortabgomplement of the
kernel of 0. Moreover, thad has closed range means precisely that for @ny )-form in the
range ofd we can solve the equati@ly = o with an estimate

If1I < Clle]
and it follows from functional analysis that we then can s@¥*v = n with the bound
[oll < Clinl
whereC is the sameonstant. We apply these general facts to the ndrmis= || - |4, defined

by our fixed Kéhler formv and metricsy;. In case all metric®, are of equivalent size, so that
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¢ — ¢4,| < Ait follows that we can solvé? v = n with an L?-estimate independent of This
observation is of crucial importance in the sequel.

Letu; be a holomorphic section of the bundieand let
.06
%= G

For eacht we now solve

(3.2) Oy = WL(Qb'tUt%

wherer | is the orthogonal projection on the orthogonal complemétiteospace of holomorphic
forms, with respect to thé?-norm || - ||2. With this choice of; we obtain the following formula
for the curvature of, see([6], [8]. In the formulay stands for the natural projection map from
X x Q1o Q andp.(T) is the pushforward of a differential form or current. WHEs a smooth
form this is the fiberwise integral &f.

Theorem 3.1.Let© be the curvature form of’ and letu, be a holomorphic section d@f. For
eacht in 2 letv; solve (3.1) and be such thatv; A w = 0. Put

ﬂ:ut—dt/\vt.

Then
(3.2) (Oug, us)r = pu(CriOO xd AU ANt ) + / |Ovy||2e~? idt A df.
X

Remarlk3. This formula shows that the curvature is nonnegativ'/é@mgb > 0. WhenL = —Kx
this implies immediately Theorem 1.1, for smooth curves] e general case follows by the
approximation techniques in the next section. The formalalee found at the end of section
2.1in [8]. The proof there is a bit complicated since it dewith the case of a general smooth
proper fibration. In the present case, the proof follows feooomputation of

At least when—Kx > 0, Theorem 1.1 can also be proved by differentiatfi@) and applying
Hormander’sL?-estimate foi0. There are some difficulties in adapting this method of ptoof
the case when Ky is merely semipositive. However, the main advantage ofgifgirmula (3.2)

instead is that it is useful when studying when equality batdthe inequalityF” (¢) > 0, which
we shall do next.

If the curvature acting omn; vanishes it follows that both terms in the right hand side3o2)
vanish. In particulary, must be a holomorphic form. To continue from there we firstiass
(like in [7]) thati0o¢; > 0 on X. Takingo of formula 3.1 fort fixed, we get

56¢tvt = 5¢t VAN Ug.
Using
DO% + 9%0 = 00
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we get ifv; is holomorphic that
00¢, N\ v, = 5@ A Uy
The complex gradient of the functiap, with respect to the Kahler metri®@dg, is the (1, 0)-
vector field defined by
V,i00¢, = i,
Sinceddg, A u, = 0 for bidegree reasons we get
(3.3) 00y N vy = Dy A u = (Vi) 00d) Au=—00¢; A (Vi]u).

If i00¢, > 0 we find that

—vy = Vi |u.
If v, is holomorphic it follows that/; is a holomorphic vector field - outside of the zerodivisor of
u; and therefore everywhere since the complex gradient is gmowler our hypotheses. If we
assume thak carries no nontrivial holomorphic vector field§,and hence; must vanish so&t
is holomorphic, hence constant. Hence

s000¢; is independent of. In general - if there are nontrivial holomorphic vectordie}t we get
that the Lie derivative 0d0¢, equals

L0000 = 0,106, = 906, = =900,
Together with an additional argument showing thiatust be holomorphic with respect t@as
well (see below) this gives th&¢, moves with the flow of the holomorphic vector field which
is what we want to prove.

For this it is essential that the metrigsbe strictly positive onX for ¢ fixed, but we shall now
see that there is a way to get around this difficulty, at leasbime special cases.

The main case that we will consider is when the canonical leupfdX is seminegative, so we
can takeL = —Ky. ThenKx + L is the trivial bundle and we fix a nonvanishing trivializing
sectionu = 1. Then the constant section— u; = u is a trivializing section of the (line) bundle
E. We write

F(t) = —log Jull? = — log / e = — log / —
X X

Still assuming thap is smooth, but perhaps not strictly positive 8nwe can apply the curvature
formula in Theorem 3.1 with, = v and get
||| 2100, F = (Oug, uy)y = pu(cai®dp A A ie™ ) +/ |Ov,||Pe~tidt A dL.
X
If F is harmonic, the curvature vanishes and it follows that holomorphic onX for anyt
fixed. Sinceu never vanishes we catefinea holomorphic vector field; by
—vy = Vi |u.

Almost as before we get

Oy A= 00, Nvy = =00, A (Vi]u) = (Vi ]0d¢n) A u,
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which implies that
V;)i00¢; = id¢y.
if u never vanishes. This is the important point; we have beaentalitade the nonvanishing of
i00¢, for the nonvanishing of.. This is where we use that the line bundle we are dealing with i
L = —Kx (see section 9 for partial results for other line bundles).
We also get the formula for the Lie derivative@P¢, alongV;

(3.4) Ly,00¢; = OV, |0d¢, = 00¢, = %aaqst.

To be able to conclude from here we also need to provelthdepends holomorphically on
For this we will use the first term in the curvature formula,iethalso has to vanish. It follows
that

i00p AU AT
has to vanish identically. Since this is a semidefinite fonm it follows that
(3.5) 90¢ N1 = 0.
Considering the part of this expression that contdins dt we see that
o 9¢
(3.6) K= otor 0X(§)(V}) = 0.

If 90x¢, > 0, i is easily seen to be equal to the functigid) defined in the introduction,
so the vanishing of: is then equivalent to the homogenous Monge-Ampére equatdi] we
showed thabV; /0t = 0 by realizing this vector field as the complex gradient of thectionc(¢)
which has to vanish if the curvature is zero. Here, where winger assume strict postivity of
¢; along X we have the same problems as earlier to define the complelegtadherefore we
follow the same route as before, and start by studgingot instead.

Recall that '
0@% = ¢t ANu+ ht
whereh, is holomorphic onX for eacht fixed. As we have seen in the beginning of this section,

vy IS uniquely determined, and it is not hard to see that it dépesmoothly ort if ¢ is smooth.
Differentiating with respect té we obtain

v D¢ 0o Oh
o _ s bl
5 = |awr ~ x| hut
Since the left hand side is automatically orthogonal to magphic forms, we get that

o Ol

ot
sinceu = 0 by (3.6). Again, this means that, /0t = 0 sincedv, /0t A w is still dx-closed, and
the cohomological assumption implies tht is injective on(n — 1, 0)-forms~ such thaty A w
is 0-closed.

0 =7, (pu) =0,
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All'in all, v, is holomorphic int, soV; is holomorphic onX x Q. Let F; be the flow of the
time dependent holomorphic vector field/;, so that for any function on X

9 W(E(2)) = Vi) (Fi(2)).

ot
Then we also have for any formon X that
a * *
aFt (n) = —F(Lvn).
Applying this ton = i00x ¢, we get

a * (00 * a T AYA) S AYA)
EFt (Z&&(bt) = Ft (alaagbt — L\/}Zaagﬁt) =0
by (3.4). Since; is real form, we can take real and imaginary parts of thig;s§@d¢,) = 00¢,

which completes the proof.

4. THE NONSMOOTH CASE

Our strategy to treat the general case is to write our boundece of metricsy = ¢, as the
decreasing limit of a sequence of smooth metrigs,with i900¢” > —e,w, Wheree, tends to
zero, see section 2.3. Then we can apply Theorem 3.1 for thécew” and study the limit as
v tends to infinity. Note also that in case we assume thigty > 0 we can even approximate
with metrics of strictly positive curvature. The present¢éhe negative term-¢,w causes some
minor notational problems in the estimates below. We wi#réfore carry out the proof under
the assumptions tha?d¢” > 0 and leave the necessary modifications to the reader. Thootigh
in this section we assume that depends only on the real part ©f Thus we also assume that
Q = I x iR is a strip, and for ease of notation we assume(Hiass in the interval/, so that zero
is an interior point of?.

Let 7, be defined the same way &S but using the weights” instead. Then
i00F,
goes to zero weakly oft. We get a sequence ¢f — 1,0) formsuvy, solving
8@@;’ = 7&(@%“)

for ¢ = ¢,. By Remark 1, we have ab*-estimate fon? in terms of theL? norm of ¢¥, with the
constant in the estimate independent ahdv. Sincegb't” is uniformly bounded by section 2.2, it
follows that we get a uniform bound for tHé-norms ofv? over all of X x €. Therefore we can
select a subsequencegfthat converges weakly to a formin L2. SinceiddF, tends to zero
weakly, Theorem 3.1 shows that thé-norm of dxv” over X x K goes to zero for any compact
K in ), sodxv = 0. Moreover, we claim that

3?{@ = WL(g'btu)
in the (weak ) sense that

(4.1) / thdEAvAWe‘¢:(—1)"/ dt AdEA T (Gu) A We™
X xQ

X xQ
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for any smooth forniV” of the appropriate degree.
To see this, note first that

/ dt NdEAV AN OWe™ = lim(—l)"/ dt Adt Ao (¢, u) NWe™®
XxQ

X xQ

In the left hand side we then use that (a subsequence’ afpnverges weakly irL? (since the
metrics¢” are bounded we don’t need to worry about which to v. By dominated convergence
we also have thallVe~¢" converges strongly tdl/ e~¢. Combining these two facts we see that
the left hand side converges to

/ dt NdEA v AOWe™®.
XxQ

As for the right hand side we decompose
WL(qutu) = é”tu + "
whereh” is holomorphic and both terms are bounded.tn We can then take limits in the same
way and find that the right hand side tends to
/ dt A dt A (¢pu+ h) NTWe™®.
XxQ

A similar argument then shows that + 1 is orthogonal to holomorphic forms and so must equal
71 (¢u) which completes the proof of (4.1).
Formula (4.1) says that in the sense of distributions
Ox(ve™) = 7, (pyu)e™®

(in alocal trivialization). We next claim that this meansith

Oxv — Oxp N v =T, ().
This is because in the sense of distributions

Ox (ve™?) = lim Ox (ve™®") = lim(Oxv — Ox @’ Av)e ",

which equals
(Oxv — Oxd Av)e™®
by essentially the same argument as before.

We can now takéy of this equation and find that

(42) 85X¢ ANV = éxg'bt A Uu.
Just as in the previous section we then definel@pendent vector field ol by
Vi]u=w.

Sincedxv = 0, V is holomorphic onX for ¢ fixed, and satisfies as before that
V]00x¢ = Ox .
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As before this ends the argument if there are no nontrivisdrhorphic vector fields orX.
Thenv must be zero, s@, is holomorphic, hence constant. In the general case, wénfbyis
showing that, is holomorphic irt. The difficulty is that we don’t know any regularity of with
respect ta, except that it lies ir.2, so we need to formulate holomorphicity weakly.

We will use two elementary lemmas that we state without prddfe first one allows us get
good convergence properties for geodesics, when the metniy depend on the real part of
and therefore are convex with respect.to

Lemma 4.1. Let f, be a sequence of smooth convex functions on an interikimat decrease
to the convex functiotf. Leta be a point in the interval such that'(a) exists. Thenf/(a)
converge tof’(a). Since a convex function is differentiable almost everyaidollows thatf;
converges tg”’ almost everywhere, with dominated convergence on any aciraphinterval.

In particular the lemma can be applied to a decreasing sequgrof subgeodesics that are
independent ofm ¢ and decrease to a geodesic For any fixedr in X it follows that ég(x)
converges ta),(z) for almost allt, so it follows that this holds almost everywhere Onx X.

By section 2.3 we also have a fixed bound on#uerivative of¢}, so we even have dominated
convergence.

Another technical problem that arises is that we are dealitigcertain orthogonal projections
on the manifoldX, where the weight depends anThe next lemma gives us control of how these
projections change.

Lemma 4.2. Let o; be forms onX with coefficients depending anin 2. Assume thaty; is
Lipschitz with respect to as a map fronf) to L?(X). Let=® be the orthogonal projection on
0-closed forms with respect to the metticand the fixed Kahler metrie. Thenr!(qa,) is also
Lipschitz, with a Lipschitz constant depending only on tifat and the Lipschitz constant of

with respect ta.

Note that in our case, whemis independent of the imaginary part 9fwe have control of
the Lipschitz constant with respect#tof ¢, , and also by the first lemma uniform control of the
Lipschitz constant o}, since the derivatives are increasing.

It follows from the curvature formula that
a, = / 100" NG A ue”?
X<
goes to zero if is a relatively compact subdomain Qf Shrinking(2 slightly we assume that
this actually holds witlf2’ = €. By the Cauchy inequality
/ i00¢" N AWe™ < (a, / 100" AW N We™9")1/2
XxQ X xQ
if W is any(n, 0)-form. ChooséV to contain no differentiadt, so that it is ar{n, 0)-form on X
with coefficients depending an Then
/ 100" N\W AWe™® = / 100, NW A We™®
X xQ

XxQ
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We now assume thal’ has compact support. We will then use the one variable Hoderan
inequality, which says that i’ is a function oft with compact support if2 and one derivative
in L?, andy is a smooth function i) , then

/i85¢\w|26_w§/\3¢w\26_¢.
Q Q

(This is the dual version of Hormander’g-estimate and can be found in[21].) We apply this
inequality tow = W andv = ¢”, where we considéil” and¢” as functions ot by holding the
X-variable fixed. The one variable Hormander inequality wétbpect ta then shows that

(4.3) / 100, NW AWe™? < / 07" W |2e?"
X xQ

XxQ

From now we assume thalt’ is Lipschitz with respect to as a map fronf into L*(X). Then
(4.3) is uniformly bounded, so

/ idt A dE A (pu) A We™?”
XxQ
goes to zero, wherg” is defined as in (3.6) with replaced by)”. By Lemma 4.2
/ idt A dE A (pu) AT We™
XxQ
also goes to zero. Therefore
/ idt NdE ATy (ptu) ANWe ™.
XxQ
goes to zero. Now recall that, (u”u) = 0% (dv} /0t) and integrate by parts. This gives that

/ idt A dE N avf AOxWe™®
XxQ 8t

also vanishes astends to infinity.

Next we leta be a form of bidegreén, 1) on X x Q that does not contain any differential
dt. We assume it is Lipschitz with respect#t@and decompose it into one padt 1V, which is
Ox-exact and one which is orthogonaldg-exact forms. This amounts of course to making this
orthogonal decomposition for ea¢lseparately, and by Lemma 4.2 each term in the decomposi-
tion is still Lipschitz int, uniformly inv. Sincev” A w is dx-closed by construction, this holds
also forov” /ot. By our cohomological assumption, it is al8eexact, and we get that

/ idt A dt A Ovi Nae ? = / idt A dt A Ovi A OxWe ™.
X xQ at X xQ at

Hence

/ dt Aol A O ae™®
XxQ
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goes to zero. By Lemma 4.1 we may pass to the limit here andyfigel that
(4.4) / dt A v A OPae™® = 0,
X xQ

under the sole assumption thais of compact support, and Lipschitz in This is almost the
distributional formulation oB,v = 0, except that is not smooth. But, replacing by e?~¥a,
wherey is another metric o, we see that if (4.4) holds for some Lipschitz int, it holds for
any such metric. Therefore we can replada (4.4) by some other smooth metric. It follows that
v, IS holomorphic int and therefore, since we already know it is holomorphicgrinolomorphic
on X x €. This completes the proof.

4.1. Time independence ofl”. We shall now prove that the vector fieltfsare in fact indepen-
dent of timet, i e thatV; = (F}).(V,). LetV = 0/0t — V;. This is a holomorphic vector field on
Qx X.

Lemma 4.3.

(4.5) V|08, xé = 0.

Proof. Recall thatF; is the flow of the time dependent holomorphic vectorfield, and that
(4.6) FF(00x ¢;) = 00y

(see end of section 3). Moreoveryift, =) is a function then
(0/0t)Y(t, Fi(2)) = Vi
By (4.6), the volume forms~%* must satisfy
Ft*(6—¢t) — 6_¢O+C(t),

with ¢(t) constant onX for ¢ fixed. Integrating oveX we find that

log/e“bt = c(t) +log/6_¢°,

soc(t) is by assumption a linear function. Choose local coordmetend take representatives
of the metricsg;. Then

Vi (2) = (d/dt)(¢o(z) — c(t)) = =<'
Hence
V|00, x ¢ = OV¢] = 0.
O
Remarkd4. The forma = v — dt Av in Theorem 3.1 can be writteh= —V | (dt Au). Using this
one can check that the equatiPnody = 0 is equivalent t@d¢p A u = 0. This means precisely

that the first term in the curvature formula (3.2) vanishes.nave given the indirect proof above
to avoid having to check that the formula (3.2) holds in thatias well.

Lemma 4.4. (F,)*(¢,) is independent of
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Proof. Since¢ depends only oiRet, ¢, is real valued, so it suffices to prove thdt)*(¢;) is
holomorphic int. But ' .
OJOH(FL)*(dn) = V(o)

and since)(¢,) is the coefficient ofit in V|99, x ¢ it vanishes by the previous lemma. [

Proposition 4.5. V; is a time independent vector field, i e
Vi = (F1)«(Vo)

Proof. We know that '
VtJWt = 0¢y.
Pulling back by the biholomorphic map we get from the previous lemma (Sing(w;) = wy)
that
()4 (V2) Jowo = Odbo.
This means that
(Fo)(Ve) = Vo) Jwo = 0.
In casew, is smooth and strictly positive this implies immediatelath/’ ;). (V;) = V4. In the
general case we conclude by Proposition 8.2 (see section 8). O

5. THE BANDO-MABUCHI THEOREM.

A Kéhler metric,w, on a Fano manifoldX is a K&ahler-Einstein metric if it equals a constant
multiple of its Ricci form, i e if it satisfies the equation

(5.1) Ric(w) = aw,

wherea is a positive constant. Multiplying with the constant: does not change the Ricci
curvature so we may always assume that 1, and theno must lie inc;(—Kx). This means
thatw = i00¢ for some metries on — K x and (5.1) says that

e % = a(i009)",
for some constant’ if we interpret the left hand side as a volume form as desdribesection
2.1. This means that is a critical point for theDing functional

D(¥) = log / e 1 £(th, o) VO (— K x),

wherev), is an arbitrary metric on- Ky and€ is the relative Monge-Ampere energy (see section
2.4 for definition and basic properties). Thussolves the Kahler-Einstein equation if and only
if (d/ds|s=0D(¢s) = 0 for any smooth curve;.

Suppose now that, and¢, are two Kahler-Einstein metrics. We connect them by a bodinde
geodesic), . Theng, depends only on the real partio§oG(t) := —D(¢,) is convex. We claim
that since both end points are Kéhler-Einstein metrics,dlaare stationary points f@f, sog
must be linear int. This would be immediate if the geodesic were smooth, but haincthat
it also holds if the geodesic is only bounded, with boundadviour as described in section
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2.2. The functionF is convex, hence has onesided derivatives at the endpaimdsiising the
convexity of¢ with respect tad one sees that they equal

focrr [

(Whereg, now stands for the onesided derivatives). For the fundi@n, v) we use the inequal-
ities (2.3) and (2.4). They show that the onesided derigatfG at¢ = 0 andt = 1 satisfy
G'(0) > 0and@’(1) < 0. Sinceg is convex this is only possible if both derivatives are zerd a
g is constant. As moreovér is affine along the geodesic it follows tHag [ e~ is also affine.

Thus we can apply Theorem 1.2 and it follows thét, are related via the flow of a holomor-
phic vector field, so we have proved the following theorem ah@&o and Mabuchil [1].

Theorem 5.1.Let X be a Fano manifold and supposg andw, are two solutions of the Kahler-
Einstein equation (5.1). Then there is a holomorphic vetigdd on X with time 1 flowF’, such
thatF*(w1> = Wwp-

Notice that in our proof we do not need to assume that the osedrie smooth -it is enough to
assume that their potentials are bounded.

6. TWO EXTENSIONS OFTHEOREM 1.2 FOR UNBOUNDED METRICS

One might ask if Theorem 1.2 is valid under even more genasuraptions. A minimal
requirement is of course tha be finite, or in other words that ¢ be integrable. For all we
know Theorem 1.2 might be true in this generality, but hereniidimit ourselves to curves of
metrics that can be decomposed into one part which is bouwsratdn unbounded part that does
not depend on.

6.1. The case—Kx > 0. Lett — ¢; be a curve of singular metrics dn= — Ky > 0 that can
be written

Q=T+

wherey is a metric on arR-line bundleS andr, is a curve of metrics o (K x + S) such that:
(i) 7 is bounded and only depends Bnt.

(i) e~ is integrabley) does not depend arandv is locally bounded in the complement of a
closed pluripolar set.
and

(i) 00, x (¢1) = 0.

Theorem 6.1. Assume that-Kx > 0 and thatH%!(X) = 0. Let¢; = 7, + ¢ be a curve of
metrics on— K x satisfying (i)-(iii). Assume that

F(t) = —log/ e 9t
X
is affine. Then there is a holomorphic vector figldn X with flow F; such that
Ft*(aéﬁbt) = 85%-
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We also state an important addendum.

Theorem 6.2. Assume that in addition to the assumptions in Theoren®d: > 0 andiddr, >
0 in the sense of currents. Then

(6.1) V |i00n) = 0
and F;(00v) is independent of.

We shall see in the last section that in many cases (6.1)é@spiat actually” = 0, so that the
flow F is the identity map andd¢, must also be independentof

The proof of this theorem is almost the same as the proof obidme 1.2. The main thing to
be checked is that fap = ¢” a sequence of smooth metrics decreasing tee can still solve
the equations

9% v, = WL(@”“)
with an L? -estimate independent 6andv.

Lemma 6.3. Let L be a holomorphic line bundle ove¥ with a metric¢ satisfyingiods > —wy
for some fixed Kéhler form,. Let{, be a smooth metric oh with £ < &,, and assume

I ::/ eS¢ < o0,
X

Then there is a constant, only depending ot and¢, ( not oné!) such that iff is a d-exactL
valued(n, 1)-form with
/ [P~ <1
X

/ lu?e™¢ < A.
b

(The integrals are understood to be taken with respect tcesanitrary smooth volume form.)
Proof. The assumptions imply that

[ispee<a

Sinced has closed range fdr?-norms defined by smooth metrics, we can s@lve= f with

/|u|26_§° <C

for some constant depending only &hand¢,. Choose a collection of coordinate balts such
that B; /2 coverX. In eachB; we can, by classical Hormander estimate€i solvedu; = f

with
/w#ﬁsa/Lmﬁsa,
B; B;

there is a solution: to Ju = f with
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C, only depending on the size of the balls and the choicgofhenh,; := u—u; is holomorphic

on B; and
/ |hj|26_£0 < 027
B;
5{0]
sup |h;|%e% < Cs.
B;/2
Hence

/ |hj|26_£ S Cg[
B;/2

/ lul?e™® < Oyl
B;/2

Summing up we get the lemma. O

and therefore

By the discussion in section 2.3, the assumption thaty > 0 implies that we can write,
as a limit of a decreasing sequence of smooth mettiagith

100¢; > —e,w
wheree, tends to zero. Applying the lemma o= ¢y and¢, some arbitrary smooth metric we
see that we have uniform estimates for solutions oftegjuation, independent ofandz. By
remark 2, section 3, the same holds for the adjoint operatich means that we can construct

(n —1,0)-formsv" just as in section 3, and have a uniform bound on théinorms. Again we
can take weak limits and get &n — 1, 0)-form, v that satisfie®)xv = 0.

We claim that satisfies formula
(6.2) Oxv —Oxd Av =1, (du)

as in the case of bounded metrics in section 4. This is noéauaovious since the proof of this
rested on (4.1) which used that the geodesic was boundedewdoyformula (4.1) still holds if
W is supported outside the closed pluripolar set where —oc. This means that (6.2) holds
there. Moreover, the left hand side liesid with respect to our unbounded metric, hence in
particular in ordinaryL? .. Formula (6.2) says that (locally)

8Xv—8xgb/\v—g5u

is holomorphic onX for fixed ¢t away from the singular set af. Since it is moreover irL.? and
pluripolar sets are removable féa#-holomorphic functions it follows that it is holomorphic on
all of X.
Hence we conclude that
ddxp Av =0 Au
on all of X. We then again define a vector fidldon X by V' |« = v and find that

(6.3) V|00x ¢ = Ox¢
and the proof concludes in the same way as before.
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We finally turn to the proof of the addendum in Theorem 6.2. thi we use the vector field
on) x X

0
Vi=—-V,
ot
as in section 4.1.

Lemma 4.3 implies that
0=iVAV]|00,xp =iV AV|00, xT + iV A V]I

Since both terms in the right hand side are nonnegative hyngstson, they must both vanish.
But, sincey) does not depend an

+iV A V|00 = +iV AV |00y

Sinceiddy is a positive current, this implies by Cauchy’s inequalkitgtti’’ A V' |i00vy = 0 for
any (0, 1) vector fieldIV, soV |00y = 0 . This proves Theorem 6.2.

6.2. Yet another version. We also briefly describe yet another situation where the saome
clusion as in Theorem 6.1 can be drawn even though we do nomasthat— Ky > 0. The
assumptions are very particular, and it is not at all cleat they are optimal, but they are cho-
sen to fit with the properties of desingularisations of aarsgngular varieties. We then assume
instead that- Ky can be decomposed

—Kx=—(Kx+95)+5

whereS is theR-line bundle corresponding to a kit -divisdr > 0 and we assume (K x +.5) >
0. We moreover assume that the underlying variet.a$ a union of smooth hypersurfaces with
simple normal crossings. We then look at curves

=T+

wherer; is boundedz’aa_t,xn > 0 andy is a fixed metric orf satisfyingiddy = [A]. We claim

that the conclusion of Theorem 6.1 holds in this situatiowek. The difference as compared to
our previous case is that we do not assumedhatin be approximated by a decreasing sequence
of metrics with almost positive curvature. For the proof wipm@ximater, by a decreasing
sequence of smooth metri¢s satisfying

1007 > —ew.
As for 1) we approximate it following the scheme at the end of sectiBrbg a sequence satisfy-
in
° 100" > —Cw
and
100Y” > —e,w
outside of any neighbourhood &f. Then letp; = 7" 4 v”. Now consider the curvature formula
(3.2)

(6.4) (0%, Ug)y = Pu(CnidDP! AN Te™ ) + / |0vY ||Pe~% idt A dt
X
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We want to see that the second term in the right hand side term#so given that the curvature
O tends to zero, and the problem is that the first term on the highd side has a negative part.
However,

Do (Cri00PY N A Gie™ )
can for anyt be estimated from below by

6.5) el -C / ot P
U

whereU is any small neighbourhood af if we choosev large. This means, first, that we still
have at least a uniform upper estimatetbti. This, in turn gives by the technical lemma below
that theL?-norm ofv? over a small neighbourhood & must be small if the neighbourhood is
small. Shrinking the neighbourhood agrows we can then arrange things so that the negative
part in the right hand side goes to zero. Thereforelth@orm of v’ goes to zero after all, and
the limit of

<@Vut, Ut>

t— —log/e“bt
iS convex.

After this the proof proceeds as before. We collect this enrtaxt theorem.

Theorem 6.4. Assume that-(Kx + 5) > 0 and thatH%!(X) = 0. Let¢; = 7; + ¢ be a curve
of metrics on— K x where -
(i) 7, are bounded metrics on(Kx + S) withi007, > 0, depending only oRe ¢,
and
(ii) v is a metric onS with 100y = [A], whereA is a Klt divisor with simple normal crossings.
Then

is zero. The last fact means that

F(t)=— 1og/ e %
X
is convex. ItF(t) is affine, there is a holomorphic vector fidldon X with flow £} such that
F} (00¢1) = 90¢y.
We end this section with the technical lemma used above.
Lemma 6.5. The term
U
in (6.2) can be made arbitrarily small i is a sufficiently small neighbourhood Af

Proof. CoveringA with a finite number of polydisks, in which the divisor is aaniof coordinate
hyperplanes, it is enough to prove the following statement:
Let P be the unit polydisk ifC™ and letv be a compactly supported functionih Let

e =Y ajlog(lz]* +e)
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where0 < a; < 1. Assume

/(|v|2 + |5U|2)6_¢ < 1.
P

/ lv]2e™ < s
U{lz;]<6}
wherecs tends to zero with.
To prove this we first estimate the integral oygit < ¢ using the one variable Cauchy formula
in the first variable

Then ford >> ¢

oo )= [ (G #)/ (G- =)
which gives
e AP <C [ g (611G
Then multiply by(|z;]? 4+ €)~** and integrate with respect t@ over|z;| < 4. Use the estimate
/ 1
m1<s (12112 + €)% |z —

multiply by >0 a; log(]z;|* + €) and integrate with respect t6. Repeating the same argument
for 25, ..z, and summing up we get the required estimate.

< cs(|Gf* + )7,

O

7. A GENERALIZED BANDO-MABUCHI THEOREM

As pointed out to me by Robert Berman, Theorems 6.1 and 6d5i¢eersions of the Bando-
Mabuchi theorem for 'twisted Kahler-Einstein equatiori29], [3], and [15]. Letd be a positive
(1, 1)-current that can be written

9 = 00y
with ) a metric on aR-line bundleS. The twisted K&hler-Einstein equation is
(7.1) Riqw) = w + 6,

for a Kahler metricv in the class:[—(Kx + S)]. Writing w = i09¢, where¢ is a metric on the
R-line bundleF := —(Kx + 5), this is equivalent to

(7.2) (100¢)" = e~ V),

after adjusting constants. We will consider only boundddtgms to this equation.

To be able to apply Theorems 6.1 and 6.4 we need to assume thé integrable. By this
we mean that representatives with respect to a local framentegrable. Whefl = [A] is the
current defined by a divisor, it means that the divisor is Kilt.

Solutionsy of (7.2) are now critical points of the function

Dy(0) = —log / ) (6, X)
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wherey is an arbitary metric o’. Hereq) is fixed and we let the variablgrange over bounded
metrics withidds > 0. If ¢, and ¢, are two critical points, it follows from the discussion in
section 2 that we can connect them with a bounded geodesiSincef is affine along the
geodesic it follows that

is affine along the geodesic and we can apply Theorem 6.1.

Theorem 7.1. Assume that- Ky is semipositive (i e that it has a smooth metric of semipaesiti
curvature) and that{®!(X) = 0. Assume thatddy = 6, wheree ¥ is integrable and) is a
positive current. Let, and¢, be two bounded solutions of equation (7.2) wih¢; > 0. Then
there is a holomorphic vector field], with time one flow/’, of X, homotopic to the identity,
such that
F*(00¢1) = 0d¢y.
Moreover,
V]g=0
and
F*(6) = 0.
Proof. The first part follows immediately from Theorem 6.1. Theor@s says thav; |6 = 0.

This implies that the Lie derivative @#falongV” vanishes, which gives the last statement.
O

In the same way we get from Theorem 6.4

Theorem 7.2. Assume that- Ky = —(Kx + S) + S where—(Kx + 5) is semipositive and

is theR-line bundle corresponding to a kit divisdx > 0 with simple normal crossings. Assume
also that7%!(X) = 0. Let¢, and ¢; be two bounded solutions of equation (7.2) with: [A]
and withiddg; > 0. Then there is a holomorphic vector figld,with time one flowf, such that

F*(85¢1) = 83_%-
Moreover
ViJA =0
soV; is tangential toA, and
F*([A]) = [A].

In some cases the conclusion of Theorems 7.1 and 7.2 actogdly thatV = 0, so that#
is the identity map and, = w;. Probably the simplest case of this is the following (see the
next section for variants on this). We assume tRais Fano so that- Ky > 0 and then let
(S) = —rKx, where0 < r < 1. Then we can rewrite equation (7.1) as

Ric(w) = (1 —r)w + 16,
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wherew is a Kahler metric in-;[— K x] and# also lies in that class. We chooge= [(1/\)A]
whereA is a smooth connected divisor of multiplicity one, definedalsections of —AKx, A a
positive integer. Then we can takein Theorem 7.1 as

¥ = (r/X)log|s|*.
Clearly e~¥ is locally integrable and it follows from Theorem 7.1 tHatis tangential to the
divisor A . But this implies thal” must be identically zero. This was proved by Berman for
A = 1 and by Song and Wang for > 1; see [3] and([28]. (We will also give a different proof
and partial extension for the case whep- 1 in the next section.) We summarize in a theorem.

Theorem 7.3.Let[A] be a smooth connected divisor of multiplicity one on a Fanaifold X,
defined by a section, of \(—Kx), where)\ is a positive integer. Let, andw, be two solutions
in ¢;[— K x| to the twisted K&hler-Einstein equation

Ric(w) = (1 — t)w + t/A\[4],
with 0 < ¢ < 1, of the formw; = i09¢;, ¢; bounded. Thew, = w;.

Notice that the cask = 1 of this theorem is rather delicate. E&requal to the Riemann sphere
we can take the disconnected anticanonical diviset {0, co}. Then clearly the conclusion of
Theorem 7.3 fails as there are nontrivial automorphisms az fixing A. Thus the assumption
of connectedness is necessary and, similadly= 2{0} shows that we also need to assume
multiplicity one. Note also, as pointed out by a refereet thas automatically connected if
n > 1, as follows from the Lefschetz heyperplane theorém, [18].

8. COMPLEX GRADIENTS AND UNIQUENESS FOR TWISTEOKAHLER-EINSTEIN EQUATIONS

The main point of the proofs in the previous sections waswleetound a holomorphic vector
field, V, on X satisfying
so thatl” was sort of a ‘complex gradient’ in a rather non regular s$itura This vector field also
satisfied

V]e=0

whered is the twisting term in the twisted Kahler-Einstein equasioWe will now discuss when
this last condition force¥®” to be zero. Mainly to illustrate the idea we start with a ditbawhen
the metric is smooth, but not necessarily positively curved

Proposition 8.1. Let L be a holomorphic line bundle over the compact Kéhler madifo] and
let ) be a smooth metric oh, not necessarily with positive curvature. Assume that

HOY(X Kx +L)=0
and
H(X,Kx + L) #0.
Assume also thdt is a holomorphic vector field oX such that
V|00 = 0.
ThenV = 0.
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Proof. We follow the arguments in section 3. Lebe a global holomorphic section éfx + L,
and put

v:="V]u.
Thenw is a holomorphicL-valued,(n — 1, 0)-form and

00 Nv = —(V]00) Au = 0.
Hence B B
00%v = —0%0v = 0.
This implies that
/01% A O%ve™V = i—/@@wv ATe ¥ = 0.

Henced”v = 0. Moreover, our assumption thé&' vanishes implies that thé-closed form
v A w = Ow for some(n, 0)-form w. Therefore

/UA@Aw6_¢:/UA5—w6_w:0.

Thusv andV must be zero which completes the proof. OJ

We shall next see that the same conclusion holds if we onlynasshat our metric is such that
e~¥ is locally integrable if we assume that the curvature curisemipositive.

Proposition 8.2. Let L be a holomorphic line bundle over the compact Kahler madifo] and
let 1) be a metric onL such thati9dy > 0 ande~¥ is locally integrable. Assume that

HOY(X Kx +L)=0
and
H°(X,Kx + L) #0.
Assume also that is a holomorphic vector field oA such that
V |00y = 0.
ThenV = 0.

For the proof we need a technical lemma which is a little birendelicate than it seems at
first glance. Recall that whenis smooth we have defined the expressin as
0% = e¥0e Vv = Ov — Y Aw.
More exactly, this means that these relations hold in angl lotvialization.

As it stands, the first of these formulas does not make sengasifallowed to be singular.
Therefore walefing for v smooth and) singular

(8.1) O%v = 0v — Y Aw.
The next lemma says that the formula used above continuesldarhthe singular case if we

assume that~¥ is locally integrable and the weight is plurisubharmoniBut(not in general,
see below!)
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Lemma 8.3. Let ) be a plurisubharmonic function in an open setdh such that—¥is locally
integrable. Letv be a smooth differential form such th@tv, as defined in 8.1, is also smooth.
Then

e Vo¥v = de Vo
in the sense of currents.

Proof. What we need to check is that
vAOe ™V = —(vAOY)e Y

if v and—v A 0v are smooth so that the expressions above are well defineck Bia statement
is purely local we can take a sequence of smooth plurisubtw@imfunctions), = ¢ *x,, where
X 1S a sequence of radial approximations of the identity, tlesrease t@. The left hand side
is then the limit in the sense of currents of

—v A O e
and the right hand side is the limit of

—v A Ope ¥,
We have to prove that these two limits are equal.

Lemma 8.4. If ¥ is plurisubharmonic, thew lies in L? locally for anyp < 2. With, as
abovedy, tends tody in L] foranyp < 2.

Proof. For any compaci, there is are such that =¥ is integrable ovek, see[[21]. Moreover,
since ) )

i00e > e2eVioy N O,
we see thatdy|?e< is locally integrable for any > 0. Therefore Holder's inequality implies
that|0v|? is locally integrable for any < 2. Hence

a?/)u = 3¢ * Xv
tend tody in LY O

loc*

Let us now first assume that? is not only integrable locally, but lies ih? locally for some
g > 2. Then the conclusion of the lemma follows from the convecgasfdv, in LP and ofe=*~
in L9,
This means that under the assumption in the lemma we havegtbat
v A Qe = —tv A e,

if ¢ is between zero and one half. But both sides are real andilytations oft with values in
the space of currents, for< 1. Therefore the same formula holds for argss than one and we
only need to take limits (still in the space of currents} &ands to one. OJ

Example: Let) = log |2|? in C and letv = z. Thewv is smooth and¥v = 0. On the other hand

de Yoy = 8% = 0pdz # 0.
z



30

This shows that the assumption of local integrability:of is essential. Otherwise the two sides
do not need to be equal even if they are well defined. O

Proof of Proposition 8.2: Given the lemma, this proceeds just like the proof of PrajpmsB.1.
Takeu a holomorphic section ak'y + L, and letv = V' |u. As beforev is holomorphic and¥v
is also holomorphic. In particular, booth forms are smoatlwve can apply the lemma. First

cn/ﬁwv A Qve™ = /81% A O(e™ VD) = /881% Ave ¥ = 0.
Henced¥v = 0. Then, invoking the Kahler formy, if v A w = Jw,
cn_l/v/\v/\we_w = Cn_1/’11/\%6_w = i/@wv/\we_w =0.

Hencev and thereford” vanish. O

To have an example of the situation in Proposition 8.2, loo& amooth divisorA defined
by a sections of a multiple AL of L. Lety = (1/)\)log|s|?. Then satisfies the assumption
of Proposition 8.2 ifA\ > 1. This means that any holomorphic vector field that is tangetd
A (in particular, vanishing od\) must vanish, cf[28]. As reflected by the example above, this
is not true if A = 1. For an example of this take a field on the Riemann sphere that vanishes
at zero and infinity. Concretely,0/0z on C extends to such a field. Hele = —Kp: . The
cohomological assumptions of Proposition 8.2 are satishiatithe conclusion fails if) is the
metric on—Kp = O(2), that extenddog |2|*> on C. However, Song-Wang in the reference
above and also Berman,/ [3] have proved that the conclusies bold on a Fano manifold for
L = — K for an anticanonical divisor, provided the divisor is smpapnnected of multiplicity
one. This does not seem to follow from our propositions.

8.1. Meromorphic vector fields. In the next section we will need an extension of the results of
the previous section wheéki is only known to be meromorphic. In this case we cannot expect
anything as precise as Proposition 8.2, even if the polés i outside of the support @i

Let for example) be a metric on the anticanonical bundle of the Riemann sgheren O(2))

that equals

Y= Ei\[:log|z—ov|2
N4

onC. Sincey’ grows like2 log |z|? at infinity, infinity is outside the support @v. Let

" 0
V=17(z — ai)&
on C; it extends to a meromorphic field with pole at infinity. Thtae tonclusion of Proposition
8.2 fails even though—"" is integrable fop < N/2. On the other hand, we shall now see that
if L is ample, and~*¥ is integrable formll &, the proposition 8.2 holds even for a meromorphic

field.
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Proposition 8.5. Let L be an ample holomorphic line bundle over the compact Kahkamifald
X, and lety) be a metric onL such thatiody > 0 ande=*¥ is locally integrable for allk > 0.
LetV be a meromorphic vector field oXi such that

(8.2) V |00y =0
outside the poles df. ThenV = 0.

Proof. Since V' is meromorphic, there is a holomorphic sectiof some holomorphic line
bundle(S) such thatsV' is holomorphic. Taking: sufficiently large we can, sinck is ample,
find a nontrivial holomorphic sectiorf of K x +kL—(S). Letu = su’. Thenu is a holomorphic
section ofKx + kL, andv := V |u is also holomorphic. As before, the condition 8.3 impliestth
00y A v is zero outside of the polar divisor. Therefore it vanishesgvhere sincédy cannot
charge any divisor ie~*¥ is integrable for alk. We can then repeat the proof of Proposition 8.2
word for word, if we replacd. by kL. O

9. A VARIANT OF THEOREM 1.2 FOR OTHER LINE BUNDLES THAN—K x

In this section we consider a general semipositive line luAdover X, and the space of
holomorphic section&®(X, Kx + L). First we assume that this space is nontrivial, but later we
will even assume thak'x + L is base point free, i e that the elementst8f( X, Ky + L) have
no common zeroes. Lét be an open set i@; it will later be the strip{#;0 < Ret < 1}, and let
¢, for t in Q2 be a subgeodesic (see section 2.2) in the space of metricsAs explained in the
beginning of section 3 we then get a trivial vector bundlever 2 with fiber H°(X, Kx + L)

with norm
2 = / e,
X

In casep, is smooth, the curvature of this metric is given by Theorein Brom this formula we
see that the curvatur is nonnegative, and if for somein H°(X, Kx + L), ©Ou = 0 at a point
t, thenw, is holomorphic. We can then follow the same route as befodedafine a vector field
V by

Vi]u = uv.
In section 3 we looked at the case when= — Ky, in which caseKx + L is trivial, so a
holomorphic section has no zeros, and it follows thias a holomorphic field. For general,
u Will have zeros, sd/ is a priori only meromorphic. If, is smooth and has strictly positive
curvature this is not a serious problem since

VJ 88¢t = 8¢t
soV is smooth and therefore must after all be holomorphic. Theeehe arguments of section
3 lead to the conclusion that # does not have strictly positive curvature then the change of
metric must be given by the flow of a holomorphic vector fiekk §7].
If e g the subgeodesic is only bounded this argument does at. WNevertheless we can
by adopting the methods of section 4 get the same conclusise assume that the curvature

is not only degenerate, but vanishes identically. Sincecthrgature is always nonnegative the
assumtion amounts to saying that the trace of the curvataurisies. This is the same as saying
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that the determinant off has zero curvature. Yet another way of saying the same thiiny i
terms of the function

L(¢;) :=logVol(By),

where B; is the unit ball inE;, and the volume Vol is computed with respect to some fixed
Lebesgue measure @i (X, Kx + L). It follows from Theorem 3.1 that(¢;) is concave along
a subgeodesic and the curvature®is zero if and only if£(¢,) is affine.

Theorem 9.1. Assume thal{y + L is base point free and that
HY(X,Kx + L) =0.

Assume thab; is a bounded subgeodesic in the space of metricsé @rhich is independent of
the imaginary part of. Then, ifC(¢,) is affine, there is a holomorphic vector fiéldon X with
flow F; such that

Ft* (35@) == 85¢0

Proof. As explained above the assumtion tiidbe affine means that the curvaturefofanishes
identically. Following the arguments of section 4, we gefacht and eachiin H°(X, Kx+1L)
a meromorphic vectorfieltf, , satisfying

V;f,uj 85¢t = 5¢t

By Proposition 8.4 this means thigt, = V, ./, so all the fields for different choice of sections are
the same. Since the polesdf, are contained in the zero set@fand since we have assumed
that our bundle is base point free it follows that there ar@oles. The proof is then concluded
in the same way as in section 4. O

10. KAHLER-RICCI SOLITONS

Let X be a Fano manifold. A Ké&hler formy, on X in ¢[— K] is said to be a Kahler-Ricci
soliton if it satisfies the equation

(10.1) Ric(w) = w+ Lyw

for some holomorphic vector field on X. HereLy is the Lie derivative ofv alongV” which is
also equal td.r.v + L1, v. Taking real and imaginary parts we see that

LIm vwW = 0

sow is invariant under the flow of the imaginary partiof Tian and Zhu, seé [30] have proved a
generalization of the Bando-Mabuchi uniqueness theorermsdiitons, saying that two solutions
to (10.1) are related via the flow of a holomorphic vector fiddthis section we shall show that
this theorem also follows from Theorem 1.2. In a later pajdi, Tian and Zhu also proved a
generalization of this result for two solitons that a primme associated to different vector fields.
The proof there builds on their earlier result. For compiess we also sketch the very beautiful
reduction of Tian-Zhu of the general problem to the problemdne fixed field, although we
only have minor simplifications for that part of the arguméBee also [20].)
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10.1. Solitons associated to one fixed fieldAs in the proof of Tian-Zhu our proof uses a gen-
eralization of the energy function&l that was introduced by Zhu ih [32], which we shall now
describe.
Let first
H = {¢; metricon — Kx,i00¢ > 0}.
In the sequel we write)? for i00¢ if ¢ lies in#H. If V is any holomorphic vector field oX and
¢ lies inH, we will define a functiorh® by

V]w? =ioh®.

This definition is meaningful since the left hand side is diea 9-closed(0, 1)-form, and there-
fore 9-exact on a Fano manifold. Of course, is only determined up to a constant, and we will
need to choose this constant in a coherent way. Here is onéovelythis.

Definition 1. Let ¢ be a smooth metric on K x, and let as in section 2, ¢ be the corresponding
volume form onX. Then we define, fol” an arbitrary holomorphic vector field oi, the
functions, by

(10.2) Ly(e™?) = —h{e?,
whereLy is the Lie derivative.
Proposition 10.1. The functiorh?} defined in 10.2 has the following properties:
1.V ]i0d¢ = ioh?,
2. [hYe=? =0,
3.0y = B+ B,
and if y is a function
4.1 =R+ V(x).
Moreover,hf} is real valued if and only if,? = i00¢ is invariant under the flow diin V.

Proof. Property 2 follows since the integral of a Lie derivative of@ume form always van-
ishes, 3 is direct from the formula for the Lie derivative ahtbllows sincehy, is a logarithmic
derivative.

To check 1, choose local coordinatésand a local representative ofso that

e ? = c,e”%d AdZF.
Let Fi(z) be the flow ofV/. Then for smalk
Fr(e®) = cpe” % J(t, 2)2d2? A d7
where the Jacobias is holomorphic irt andz jointly. Then
0
h@ = a(@sj o Iy —log|J(t, Z)|2)|t:0 =V(¢;) + R.

Here R is holomorphic inz, so
iOhY, = iV (¢;) = V ]id0g.
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For the final claim, note that 1 implies that
2Im V' [i00¢ = dRe h? + d“Tm h?.

HenceL, yvw® = 0 if and only if the imaginary part o/fz?} is constant. By 2, this constant must
be zero. O

Remarks. Since 1 and 2 of Proposition 10.1 determh‘ﬁeuniquely, we could also have defined

h?} by properties 1 and 2. This is the route taken in [30] and [8dg.have chosen to start instead
from 10.2 since it seems to simplify the argument somewheizdso gives 3 and 4 for free.

Next we let
Hy = {¢ € Hx; Limviddg = 0}.
We can now define Zhu’s energy functional bygjfis a smooth curve iy,

d
dt

wherea is some real constant. In the sequel we will suppress thecgpbs, and in the end we
will choosea = 1, but it seems useful to include an arbitraryn the discussion anyway. Of
course we need to prove th& is well defined, cfl[32]. This and other basic propertie<of
are summarized in the next propositions.

(10.3) () = / $u(1006,)" e

Proposition 10.2. Let ¢, ;, be a smoothly parametrized family of metricsHi. Then

dts t,s d2 t,s ;S ; ;) A t,s
4 / Ot (0, o)™ — / ( dfg’l; (D6, D)) (10060 ) e

The brackgt(égbt, 5¢s> stands here for the real scalar product of the two forms vesipect to
the metrici00¢, ;, i e the real part of the complex scalar product. Since thiet h@nd side is
therefore symmetric inands it follows that& is well defined and putting= s that

Proposition 10.3.

d2 . _. s ,
e =[G~ 106 @000
Moreover, takings, ; = ¢ + t we see that
/(i@@gb)”eam

is constant or{y,. This is of course where the specific choicehéfis important. Proposition
10.2 is essentially contained in Zhu's paper but formulatéerently there and we will give a
proof in an appendix.

Proposition 10.4. £, is affine along the&>!:*-geodesic connecting two smooth metricg{i.
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Proof. It is well known that
(b — |064|*)(100¢,)™ Aidt A dE = (1/n)(i0D¢)" ),

where (i00¢)"*! is the Monge-Ampere measure ofwith respect to all variables o x X.
The formula in Proposition 10.3 can therefore be intergretesaying that

00 (dr) = (—1/n)p.((109)" ™).
This was proved assuming thais smooth so we need to regularizéf it is only of classC'.
Moreover, we need regularize so that we stay in the s@#ace This is actually achieved by
Chen’s proof of theC'*-regularity of geodesics. There the geodesic is obtainethedimit
of smoothe-geodesics that are solutions of a strictly elliptic equati Theses-geodesics are
invariant undeifm V' if the boundary values are.

It is well known that the Monge-Ampere measure convergeskiyamder decreasing limits
of bounded plurisubharmonic functions. Moreover it is clieam our formula forh?t that A%
converges uniformly under limits i6"!. Therefore the formula holds alsodfis only in Ct1.
Since the Monge-Ampere measure of a (generalized) geodmsiches the claim follows. [

Remarke. It is also true that is affine along any’'!-geodesic ir{y-. This can be proved by
approximating a’'! -geodesic irt{y by smooth curves ifty-, but we omit the details.

Let us now see how the uniqueness theorem of Tian-Zhu follaws Theorem 1.2 and Propo-
sition 10.2. Letwy, = i00¢, andw; = 100¢; be two (smooth) solutions to equation 10.1. As
noted above; lie in Hy. To avoid technical complications we will resort to Chetisdrem and
connectp, and¢, with a C*!-geodesicg,. By uniqueness of geodesics it follows that forall
¢ lies inHy,. Since ) ) ) )

Lyiodg = d(V |i00¢) = dioh® = i00h?,
we can rewrite equation 10.1 as
(10.4) (i00¢)"e"” = Ce™?
for some constan®’. Choose&” so that

Co / (i00¢p)"e" = 1.

Then (10.4) implies that
-
€

Jeo

Fz(o) = log/6_¢ — Co&2(9).

Any solution of equation 10.4 ifi{y is a critical point of ;. Since& is affine along our
geodesic we see by Theorem 1.1 ttiat(¢;) is convex int. If ¢, and¢; are critical points

Fz(¢,) and hence
log/e_d’t

Co(i0d) e =

Define
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are also affine in. Theorem 1.2 then implies that there is a holomorphic vefetd on X with
time one flowF’ such thatt™* (w,) = wy.

10.2. Solitons associated to different fields.In this section we sketch the arguments of Tian-
Zhu from [31] to prove that two solutions to the equations

(105) RiC(WO) = wp + vao
and
(106) Ric(wl) = w1 + wal,

wherel” andV are two holomorphic vector fields oY, are also connected via an automorphism
in Auty(X), the connected component of the identity in the automormplgigup of X. As we
have seedm V' generates a flow of isometries fay. This flow is contained in a maximal
compact subgroug, of Auty(X). In the same way, the flow dfn I is contained in another
maximal compact subgroug;. By a fundamental theorem of lwasawia, [[2R], and K are
conjugate by an automorphisgiin Aut,. This means that after a preliminary automorphism
applied to one of the equations, we may assumefhat K, =: K. Tian-Zhu then show that
this implies that” = V.

To explain how this is done we go back to the construction efftmctions? in the previ-
ous subsection, with basic properties described in PropnsiO.1 . Notice that property 4 of
Proposition 10.1 means thatdf = ¢, depends on a real parameter, th@pdt)n{: = V().
Following [31] we now define a functional

f(6.V) 1= [ é(iodsy,
for ¢ in H andV any holomorphic vector field oX .
Proposition 10.5. f(¢, V') does not depend o
Proof. Take¢ = ¢, and differentiate with respect to

% F(6nV) = / V(n)e" (i096)" + n / e 08y A (i096)™"
But, since contraction withy is an antiderivation,
V(40)(100)"™ = nidgy A OhY A (100¢)" .

Inserting this and integrating by parts we see that the dtviv of f with respect ta vanishes,
so f does not depend on O

In the sequel we writ¢ (¢, V') = f(V).

Proposition 10.6.Suppose the holomorphic vector fiéldadmits a Kéhler-Ricci soliton, i e that
there is a solutionv to the equation

Ric(w) = w+ Ly (w).
ThenV is a critical point of f.
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Proof. By property 3 of Proposition 10.4 the derivative o&t the pointl” in the directionl is
/ he.eV (i00¢)".

Here we can choose anyin H by Proposition 10.5. If we také)0¢ to be aV/-soliton, then

ehv (i00¢)™ = Ce~¢ by 10.4. Hence the derivative is zero for diyy property 2 of proposition
10.4 O

Recall thatK is a compact subgroup ofuty(X) which contains the flows of bothn V' and
Im W. Let fx be the restriction of to the space of all vector fields that have this property, i e
whose imaginary part lie in the Lie algebrat Choosev = w? to be K-invariant; this can be
achieved by taking averages with respect to the Haar measufe Write

fr(V) :/ehﬁw"-

By Proposition 10.4 alh{’i are real valued i/ is such a field anddd¢ is K-invariant. Since
moreoverh?} is linear inV by property 3 of Proposition 10.1, this formula shows tliatis
strictly convex. Thereforg can have at most one critical point. It follows immediatdigit
there is at most one vector field with Im V' in the Lie algebra of” that admits a soliton. In
other words)” andWW from the beginning of this subsection must be equal (afeeptieliminary
reduction). By subsection 10.1 we then arrive at the folimytheorem.

Theorem 10.7.(Tian-Zhu,[30], [31]) Let X be a Fano manifold and let, andw; be solutions
of 10.4 and 10.5. Then there is an automorphisim Aut,(X) such thaty*(w;) = wy.

11. APPENDIX

Here we will prove Proposition 10.1. We suppress the depa®lef¢ ont ands in the
formulas and use subscripts only to denote differentiatith respect to these variables.

d% / G (i09g)" e’ = / 1.5 (100" +

+n / G,(i086.) A (106)"Le™® 1 g / GV () A (1000) €™ =< I+ IT+ I1T.
Integrating by parts we get
II=-n / 0y A s A (109¢)" 1™ — an / i$:On? A Oy A (109¢)™ e |
Recall thatioh? = V |i0d¢ so that we have-idh? = V' |idd¢. Since contraction with a vector
field is an antiderivation we get
0= V](¢s A (i0DP)™) = V() (i00)™ + ndds A iOh® A (10D)™ L.
Inserting this above we see that

II = —n/iaét A Dby A (i100¢)" e —a | GV (¢s)(i0dp)" ™.
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Hence

% / G106 e = / G0 o (1090)"e™ — / 106, A Db, A (1056)" e +

2ia / GIm V (¢s) A (i100¢)"e™” .

But the left hand side of this equality is real so the last temast be zero (which is also clear
since¢ is invariant under the flow ofm V7). We are then left with the formula in Proposition
10.1
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