Skip to main content
Log in

Electrogeneration of polyluminol and chemiluminescence for new disposable reagentless optical sensors

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A performant reagentless electrochemiluminescent (ECL) detection system for H2O2 is presented, based on an electropolymerized polyluminol film prepared under near-neutral conditions. Such an original polyluminol electrodeposition is reported for the first time and on a screen-printed electrode (SPE) surface. Electropolymerized luminol acts as an active luminophore of the electrochemiluminescent reaction, as the monomer does. Polymerization conditions have been optimized in order to obtain the best ECL responses to H2O2. By performing electrodeposition in a potentiostatic mode, at 425 mV vs. Ag|AgCl, in 0.1 mol L−1 phosphate/0.1 mol L−1 KCl pH 6 and 1 mmol L−1 luminol, with a total charge of 0.5 mC, the linear range for H2O2 detection extends from 7.9 × 10−8 mol L−1 to 1.3 × 10−3 mol L−1. Such performant disposable reagentless easy-to-use miniaturized systems based on SPEs should be applicable to the electrochemiluminescent detection of many oxidase-substrate compounds.

An original polyluminol electrodeposition process on a screen-printed electrode surface is reported for the first time. The polymeric structure is demonstrated to behave as an electrochemiluminescent luminophore, allowing disposable reagentless easy-to-use optical sensors for hydrogen peroxide detection to be designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fahnrich KA, Pravda M, Guilbault GG (2001) Talanta 54:531–559

    Article  CAS  Google Scholar 

  2. Marquette CA, Blum LJ (1999) Anal Chim Acta 381:1–10

    Article  CAS  Google Scholar 

  3. Zhu L, Li YX, Zhu GY (2002) Sens Actuators B 86:209–214

    Article  Google Scholar 

  4. Godoy S, Leca-Bouvier B, Boullanger P, Blum LJ, Girard-Egrot AP (2005) Sens Actuators B 107:82–87

    Article  Google Scholar 

  5. Godoy S, Violot S, Boullanger P, Bouchu MN, Leca-Bouvier BD, Blum LJ, Girard-Egrot AP (2005) Chembiochem 6:395–404

    Article  CAS  Google Scholar 

  6. Leca B, Blum LJ (2000) Analyst 125:789–791

    Article  CAS  Google Scholar 

  7. Leca BD, Verdier AM, Blum LJ (2001) Sens Actuators B 74:190–193

    Article  Google Scholar 

  8. Marquette CA, Degiuli A, Blum LJ (2003) Biosens Bioelectron 19:433–439

    Article  CAS  Google Scholar 

  9. Tsafack VC, Marquette CA, Leca B, Blum LJ (2000) Analyst 125:151–155

    Article  CAS  Google Scholar 

  10. Corgier BP, Marquette CA, Blum LJ (2005) Anal Chim Acta 538:1–7

    Article  CAS  Google Scholar 

  11. Rao NM, Hool K, Nieman TA (1992) Anal Chim Acta 266:279–286

    Article  CAS  Google Scholar 

  12. Qin W (2002) Anal Lett 35:2207–2220

    Article  CAS  Google Scholar 

  13. Marquette CA, Blum LJ (2003) Sens Actuators B 90:112–117

    Article  Google Scholar 

  14. Marquette CA, Blum LJ (2004) Anal Chim Acta 506:127–132

    Article  CAS  Google Scholar 

  15. Zhang GF, Chen HY (2000) Anal Chim Acta 419:25–31

    Article  CAS  Google Scholar 

  16. Wang CH, Chen SM, Wang CM (2002) Analyst 127:1507–1511

    Article  CAS  Google Scholar 

  17. Chen SM, Lin KC (2002) J Electroanal Chem 523:93–105

    Article  CAS  Google Scholar 

  18. Lin KC, Chen SM (2006) J Electroanal Chem 589:52–59

    Article  CAS  Google Scholar 

  19. Chang YT, Lin KC, Chen SM (2005) Electrochim Acta 51:450–461

    Article  CAS  Google Scholar 

  20. Mendonca TP, Moraes SR, Motheo AJ (2006) Mol Cryst Liq Cryst 447:383–391

    Article  CAS  Google Scholar 

  21. Bartlett PN, Cooper JM (1993) J Electroanal Chem 362:1–12

    Article  CAS  Google Scholar 

  22. Cosnier S (1999) Biosens Bioelectron 14:443–456

    Article  CAS  Google Scholar 

  23. Langer JJ, Filipiak M, Kecinska J, Jasnowska J, Wlodarczak J, Buladowski B (2004) Surf Sci 573:140–145

    Article  CAS  Google Scholar 

  24. Dalmolin C, Canobre SC, Biaggio SR, Rocha-Filho RC, Bocchi N (2005) J Electroanal Chem 578:9–15

    Article  CAS  Google Scholar 

  25. Gerard M, Malhotra BD (2005) Curr Appl Phys 5:174–177

    Article  Google Scholar 

  26. Sakura S (1992) Anal Chim Acta 262:49–57

    Article  CAS  Google Scholar 

  27. Koval'chuk EP, Grynchyshyn IV, Reshetnyak OV, Gladyshevs'kyj RY, Blazejowski J (2005) Eur Polym J 41:1315–1325

    Article  Google Scholar 

  28. Hart JP, Wring SA (1997) Trends Anal Chem 16:89–103

    Article  CAS  Google Scholar 

  29. Touloupakis E, Giannoudi L, Piletsky SA, Guzzella L, Pozzoni F, Giardi MT (2005) Biosens Bioelectron 20:1984–1992

    Article  CAS  Google Scholar 

  30. Cummings EA, Linquette-Mailley S, Mailley P, Cosnier S, Eggins BR, McAdams ET (2001) Talanta 55:1015–1027

    Article  CAS  Google Scholar 

  31. Vasilescu A, Andreescu S, Bala C, Litescu SC, Noguer T, Marty JL (2003) Biosens Bioelectron 18:781–790

    Article  CAS  Google Scholar 

  32. Grennan K, Killard AJ, Hanson CJ, Cafolla AA, Smyth MR (2006) Talanta 68:1591–1600

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice D. Leca-Bouvier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sassolas, A., Blum, L.J. & Leca-Bouvier, B.D. Electrogeneration of polyluminol and chemiluminescence for new disposable reagentless optical sensors. Anal Bioanal Chem 390, 865–871 (2008). https://doi.org/10.1007/s00216-007-1731-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1731-z

Keywords

Navigation