Skip to main content
Log in

In vivo detection of DNA adducts induced by cisplatin using capillary HPLC–ICP-MS and their correlation with genotoxic damage in Drosophila melanogaster

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The antitumoral effect of cisplatin [cis-diamminodichloroplatinum(II)] in mammals is related to its binding to DNA components. However, there is a lack of specific chemical methods to selectively detect those adducts formed in vivo at low concentrations. In this work, a new sensitive and selective method of determining cisplatin–DNA adducts based on the use of element-selective mass spectrometry is proposed, and the method is then applied to detect cisplatin adducts induced in vivo in somatic cells of Drosophila melanogaster. The bioanalytical strategy proposed here allows the determination of the most important DNA adduct formed between adjacent guanine units of the same DNA strand with cisplatin, and it is based on the coupling of capillary liquid chromatography (cap-LC) to inductively coupled plasma mass spectrometry (ICP-MS). This set-up allows the simultaneous monitoring of the Pt (from the drug) and P (from the DNA components) present in these adducts, once they have been cleaved by enzymatic hydrolysis of the DNA samples. Using this instrumental set-up, the adducts of cisplatin formed in vivo when D. melanogaster flies are exposed to different cisplatin concentrations can be detected and their concentration determined. The results obtained show a direct correlation between the concentration of cisplatin adducts, the induced genotoxic damage (measured as DNA strand breaks using the Comet assay) and the cisplatin concentration.

The work illustrates the complementary use of bioanalytical and biological information to study cisplatin interactions with DNA is vivo at biologically relevant concentrations of the drug

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sherman SE, Lippard SJ (1987) Chem Rev 87:1153–1181

    Article  CAS  Google Scholar 

  2. Yachnin JR, Wallin I, Lewensohn R, Sirzén F, Ehrsson H (1998) Cancer Lett 132:175–180

    Article  CAS  Google Scholar 

  3. Jordan P, Carmo-Fonseca M (2000) Cell Mol Life Sci 57:1229–1235

    Article  CAS  Google Scholar 

  4. Veal GJ, Dias C, Price L, Parry A, Errington J, Hale J, Pearson ADJ, Boddy AV, Newell DR, Tilby MJ (2001) Clin Cancer Res 7:2205–2212

    CAS  Google Scholar 

  5. Iijima H, Patrzyc HB, Dawidzik JB, Budzinski EE, Cheng H-C, Freund HG, Box HC (2004) Anal Biochem 333:65–71

    Article  CAS  Google Scholar 

  6. Küng A, Strickman DB, Galanski M, Keppler B (2001) J Inorg Biochem 86:691–698

    Article  Google Scholar 

  7. Iannitti-Tito P, Weimann A, Wickham G, Sheil MM (2000) Analyst 125:627–634

    Article  CAS  Google Scholar 

  8. Franska M, Franski R, Schroeder G, Springer A, Beck S, Linscheid M (2005) Rapid Comm Mass Spectrom 19:970–974

    Article  CAS  Google Scholar 

  9. Phillips DH (1997) Mutat Res 378:1–12

    CAS  Google Scholar 

  10. Edler M, Jakubowski N, Linscheid M (2006) J Mass Spectrom 41:507–516

    Article  CAS  Google Scholar 

  11. Hann S, Zenker A, Galanski M, Bereuter TL, Stingeder G, Keppler BK (2001) Fresenius J Anal Chem 370:581–586

    Article  CAS  Google Scholar 

  12. García Sar D, Montes-Bayón M, Blanco-González E, Sanz-Medel A (2006) J Anal Atom Spectrom 21:861–868

    Article  Google Scholar 

  13. Pröfrock D, Leonhard P, Ruck W, Prange A (2005) Anal Bioanal Chem 381:194–204

    Article  Google Scholar 

  14. Reardon JT, Vaisman A, Chaney SG, Sancar A (1999) Cancer Res 59:3968–3971

    CAS  Google Scholar 

  15. Tice RR, Agurell E, Anderson D, Burlison B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Environ Mol Mutagen 35:206–221

    Article  CAS  Google Scholar 

  16. Fairbairn DW, Olive PL, O’Neill KL (1995) Mutat Res 339:37–59

    CAS  Google Scholar 

  17. Kassie F, Parzefall W, Knasmüller S (2000) Mutat Res 463:13–31

    Article  CAS  Google Scholar 

  18. Collins AR (2004) Mol Biotech 26:249–261

    Article  CAS  Google Scholar 

  19. Faust F, Kassie F, Knasmüller S, Boedecker RH, Mann M, Mersch-Sundermann V (2004) Mutat Res 566:209–229

    Article  CAS  Google Scholar 

  20. Bilbao C, Ferreiro JA, Comendador MA, Sierra LM (2002) Mutat Res 503:11–19

    CAS  Google Scholar 

  21. Siddique H, Chowdhuri DK, Saxena DK, Dhawan A (2005) Mutagenesis 20:285–290

    Article  CAS  Google Scholar 

  22. Vogel EW, Barbin A, Nivard MJM, Snack HF, Waters MD, Lohman PHM (1998) Mutat Res 400:509–540

    CAS  Google Scholar 

  23. Aguirrezabalaga I, Santamaría I, Comendador MA (1994) Mutagenesis 9:341–346

    Article  CAS  Google Scholar 

  24. Gaivão I, Sierra LM, Comendador MA (1999) Mutat Res 440:139–145

    Google Scholar 

  25. Pastink A, Vreeken C, Nivard MJM, Searles LL, Vogel EW (1989) Genetics 123:123–127

    CAS  Google Scholar 

  26. Welters MJP, Fichtinger-Schepman AMJ, Baan RA, Jacobs-Bergmans AJ, Kegel A, van der Vijgh WJF, Braakhuis JM (1999) Br J Cancer 79:82–88

    Article  CAS  Google Scholar 

  27. Nadin SB, Vargas-Roig LM, Drago G, Ibarra J, Ciocca DR (2006) Cancer Lett 239:84–97

    Article  CAS  Google Scholar 

  28. Niedernhofer LJ, Lalai AS, Hoeijmakers JHJ (2005) Cell 123:1191–1198

    Article  CAS  Google Scholar 

  29. Zamorano-Ponce E, Fernández J, Vargas G, Rivera P, Carballo MA (2004) Toxicol Lett 152:85–90

    Article  CAS  Google Scholar 

  30. Jirsova K, Mandys V, Gispen WH, Bär PR (2006) Neurosci Lett 392:22–26

    Article  CAS  Google Scholar 

  31. Kopjar N, Garaj-Vrhovac V, Milas I (2002) Carcinog Mutagen 22:13–30

    Article  CAS  Google Scholar 

  32. Reardon JT, Vaisman A, Chaney SG, Sancar A (1999) Cancer Res 59:3968

    CAS  Google Scholar 

  33. Del Castillo Busto ME, Montes-Bayón M, Sanz-Medel A (2006) Anal Chem 78:8218–8226

    Article  Google Scholar 

  34. Pereira Navaza A, Ruiz Encinar J, Sanz-Medel A (2007) Angew Chem Int Ed 46:569–571

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from MEC of Spain (project CTQ2004-03005) as well as the support of Applied Biosystems with the instrumental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Sanz-Medel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Sar, D., Montes-Bayón, M., Aguado Ortiz, L. et al. In vivo detection of DNA adducts induced by cisplatin using capillary HPLC–ICP-MS and their correlation with genotoxic damage in Drosophila melanogaster . Anal Bioanal Chem 390, 37–44 (2008). https://doi.org/10.1007/s00216-007-1634-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1634-z

Keywords

Navigation