Skip to main content
Log in

Acoustic microsensors—the challenge behind microgravimetry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Acoustic microsensors are commonly known as high-resolution mass-sensitive devices. This is a restricted view in many chemical and biosensor applications, especially in liquids. Sensitivity to non-gravimetric effects is a challenging feature of acoustic sensors. In this review we give an overview of recent developments in resonant sensors including micromachined devices and also list recent activity relating to the (bio)chemical interface of acoustic sensors. Major results from theoretical analysis of quartz crystal resonators, descriptive for all acoustic microsensors are summarized, and non-gravimetric contributions to the sensor signal from viscoelasticity and interfacial effects are discussed. We finally conclude with some future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift Physik 155:206–212

    CAS  Google Scholar 

  2. EerNisse EP, Wiggins RB (2001) Review of thickness-shear mode quartz resonator sensors for temperature and pressure. IEEE Sensors J 1:79–87

    Google Scholar 

  3. King WH Jr (1964) Piezoelectric sorption detector. Anal Chem 36:1735–1739

    CAS  Google Scholar 

  4. Ward MD, Buttry DA (1990) In situ interfacial mass detection with piezoelectric transducers. Science 249:1000–1007

    CAS  Google Scholar 

  5. Prajakovic LV, Cavic-Vlasal BA, Ghaemmaghami V, Kallury KMR, Kipling AL, Thompson M (1991) Mediation of acoustic energy transmission from acoustic wave sensors to the liquid phase by interfacial viscosity. Anal Chem 63:615–621

    Google Scholar 

  6. Cavic BA, Chu FL, Furtado LM, Ghafouri S, Hayward GL, Mack DP, McGovern ME, Su H, Thompson M (1997) Acoustic waves and the real-time study of biochemical macromolecules at the liquid/solid interface. Faraday Discuss 107:159–176

    CAS  Google Scholar 

  7. Eichelbaum F, Borngräber R, Schröder J, Lucklum R, Hauptmann P (1999) Interface circuits for quartz crystal-microbalance sensors. Rev Sci Instr 70:2537–2545

    CAS  Google Scholar 

  8. Kanazawa KK (2005) Some basics for operating and analyzing data using the thickness shear mode resonator. Analyst 130:1459–1464

    CAS  Google Scholar 

  9. Scholl G, Schmidt F, Ostertag T, Reindl L, Scherr H, Wolff U (1998) Wireless passive SAW sensor system for industrial and domestic applications. IEEE Int Freq Cont Symp Proceedings 595–601

  10. Springer A, Weigel R, Pohl A, Seifert F (1999) Wireless identification and sensing using surface acoustic wave devices. Mechatronics 9:745–756

    Google Scholar 

  11. Dong Y, Cheng W, Wang S, Li Y, Feng G (2001) A multi-resolution passive SAW chemical sensor. Sens Actuators B 76 76:130–133

    Google Scholar 

  12. Ballantine DS, White RM, Martin SJ, Ricco AJ, Zellers ET, Frye GC, Wohltjen H (1997) Acoustic Wave Sensors. Academic, London

    Google Scholar 

  13. Arnau A (Ed.) (2004) Piezoelectric Transducers and Applications. Springer, Berlin Heidelberg New York

  14. Grate JW, Martin SJ, White RM (1993) Acoustic wave microsensors. Anal Chem 65:987A–996A

    CAS  Google Scholar 

  15. Josse F (1994) Acoustic wave liquid-phase-based microsensors. Sens Actuators A 44:199–208

    Google Scholar 

  16. Kaspar M, Stadler H, Weiß T, Ziegler C (2000) Thickness shear mode resonators (“mass-sensitive devices”) in bioanalysis. Fresenius J Anal Chem 366:602–610

    CAS  Google Scholar 

  17. Viens M, Li P, Wang Z, Jen CK, Thompson M, Cheeke JDN (1996) Mass sensitivity of thin rod acoustic wave sensors. IEEE Trans. Ultrason Ferroelec Freq Contr 43:852–857

    Google Scholar 

  18. Lin X, Cheeke JDN, Wang Z, Jen CK, Viens M, Yi G, Sayer M (1995) Ultrasonic thin-walled tube wave devices for sensor applications. Appl Phys Lett 76:37–39

    Google Scholar 

  19. Li PCH, Thompson M (1996) Mass sensitivity of the tube acoustic wave sensor in the extensional mode. Anal Chim Acta 336:13–21

    CAS  Google Scholar 

  20. Yamanaka K, Ishikawa S, Nakaso N, Takeda T, Mihara T, Tsukahara Y (2003) Ball SAW devices for hydrogen gas sensor. IEEE Ultrason Symp Proceedings 299–302

  21. Huang CL, Tay KW, Wu L (2005) Fabrication and performance analysis of film bulk acoustic wave resonators. Materials Letters 59:1012–1016

    CAS  Google Scholar 

  22. Dorozhkin LM, Dorozhkina GN, Fokin AV, Rozanov IA, Sabelnikov AG, Sevastjanov VG (2005) Thin film piezoelectric acoustic sensor (TFPAS): further experimental validation of the theory of resonance sensitivity. Sens Actuators B 106:529–533

    Google Scholar 

  23. Thundat T, Chen GY, Warmack RJ, Allison DP, Wachter EA (1995) Vapor Detection Using Resonating Microcantilevers. Anal Chem 67:519–521

    CAS  Google Scholar 

  24. Berger R, Gerber C, Lang HP, Gimzewski JK (1997) Micromechanics: a toolbox for femtoscale science: towards a laboratory on a tip. Microelectron Eng 35:373–379

    CAS  Google Scholar 

  25. Lack FR, Willard GW, Fair IE (1934) Some improvements in quartz crystal circuit elements. Bell Syst Tech J 13:453–463

    Google Scholar 

  26. Ballato AD, Bechmann R (1960) Effect of initial stress on vibrating quartz plates. Proceedings IRE 48:261–262

    Google Scholar 

  27. Kosinski JA, Pastore RA (2001) Theory and design of piezoelectric resonators immune to acceleration: present state of the art. IEEE Trans Ultrason Ferroel Freq Contr 48:1426–1437

    CAS  Google Scholar 

  28. Tancrell RH, Schulz MB, Barrett HH, Davies L, Holland MG (1969) Dispersive delay lines using ultrasonic surface waves. Proceedings IEEE 57:1211–1213

    Google Scholar 

  29. Dieulesaint E, Hartmann P (1973) Acoustic surface wave filters. Ultrasonics 11:24–30

    Google Scholar 

  30. Coon A (1991) SAW Filters and Competitive Technologies-A Comparative Review IEEE Ultrason Symp Proceedings 155–160

  31. Aigner R MEMS in RF-Filter Applications: Thin Film Bulk-Acoustic-Wave Technology 13. Int Conf Solid-State Sensors Actuators Microsyst (Transducers ’05) to be published in Sensors Actuators

  32. Binning G, Quate CF, Gerber C (1986) Atomic Force Microscope. Phys Rev Lett 56:930–933

    Google Scholar 

  33. Bard AJ, Fan FRF, Kwak J, Lev O (1989) Scanning electrochemical microscopy. Introduction and principles. Anal Chem 61:132–138

    CAS  Google Scholar 

  34. Bykov VA, Novikov YA, Rakov AV, Shikin SM (2003) Defining the parameters of a cantilever tip AFM by reference structure. Ultramicroscopy 96:175–180

    CAS  Google Scholar 

  35. Fasching RJ, Tao Y, Prinz FB (2005) Cantilever tip probe arrays for simultaneous SECM and AFM analysis. Sensors Actuators: B 108:964–972

    Google Scholar 

  36. Lin Z, Yip CM, Joseph IS, Ward MD (1993) Operation of an ultrasensitive 30 MHz quartz crystal microbalance in liquids. Anal Chem 65:1546–1551

    CAS  Google Scholar 

  37. Abe T, Esashi M (2000) One-chip multichannel quartz crystal microbalance (QCM) fabricated by Deep RIE. Sens Actuators A 82:139–143

    Google Scholar 

  38. Vig JR, Filler RF, Kim Y (1995) Microresonator sensor array. IEEE Int Freq Contr Symp Proceedings 852–869

  39. Zimmermann B, Lucklum R, Hauptmann P, Rabe J, Büttgenbach S (2001) Electrical characterisation of high frequency thickness-shear-mode resonators by impedance analysis. Sensor Actuators B 76:47–57

    Google Scholar 

  40. Rabe J, Büttgenbach S, Schröder J, Hauptmann P (2003) Monolithic Miniaturized Quartz Microbalance Array and Its Application to Chemical Sensor Systems for Liquids. IEEE Sensors J 3:361–368

    CAS  Google Scholar 

  41. Stevenson AC, Lowe CR (1998) Noncontact excitation of high Q acoustic resonances in glass plates. Appl Phys Lett 73:447–449

    CAS  Google Scholar 

  42. Stevenson AC, Lowe CR (1999) Magnetic-acoustic-resonator sensors (MARS): a new sensing technology. Sens Actuators A 72:32–37

    Google Scholar 

  43. Lucklum F, Hauptmann P, deRooij NF accepted for Meas Sci Technol

  44. Thompson M, Ballantyne SM, Stevenson AC, Lowe CR (2003) Electromagnetic excitation of high frequency acoustic waves and detection in the liquid phase. Analyst 128:1048–1055

    CAS  Google Scholar 

  45. Vasilescu A, Ballantyne SM, Cheran LE, Thompson M (2005) Surface properties and electromagnetic excitation of a piezoelectric gallium phosphate biosensor. Analyst 130:213–220

    CAS  Google Scholar 

  46. Darinskii AN unpublished

  47. Stevenson AC, Araya-Kleinsteuber B, Sethi RS, Metha HM, Lowe CR (2003) The acoustic spectrophonometer: a novel bioanalytical technique based on multifrequency acoustic devices. Analyst 128:1222–1227

    CAS  Google Scholar 

  48. Ballantyne SM, Thompson M (2004) Superior analytical sensitivity of electromagnetic excitation compared to contact electrode instigation of transverse acoustic waves. Analyst 129:219–224

    CAS  Google Scholar 

  49. Stevenson AC, Araya-Kleinsteuber B, Sethi RS, Metha HM, Lowe CR (2005) Planar coil excitation of multifrequency shear wave transducers. Biosens Bioelectron 20:1298–1304

    CAS  Google Scholar 

  50. Raiteri R, Grattarola M, Butt HJ, Skládal P (2001) Micromechanical cantilever-based biosensors. Sens Actuators B: 79:115–126

    Google Scholar 

  51. Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959

    CAS  Google Scholar 

  52. Lang HP, Hegner M, Gerber C (2005) Cantilever array sensors. Materials Today 8:30–36

    CAS  Google Scholar 

  53. Wang Z, Yue R, Zhang R, Liu L (2005) Design and optimization of laminated piezoresistive microcantilever sensors. Sens Actuators A 120:325–336

    Google Scholar 

  54. Adams JD, Rogers B, Manning L, Hu Z, Thundat T, Cavazos H, Minne SC (2005) Piezoelectric self-sensing of adsorption-induced microcantilever bending. Sens Actuators A 121:457–461

    Google Scholar 

  55. Zribi A, Knobloch A, Tian WC, Goodwin S (2005) Micromachined resonant multiple gas sensor. Sens Actuators A 122:31–38

    Google Scholar 

  56. Tian F, Hansen KM, Ferrell TL, Thundat T (2005) Dynamic Microcantilever Sensors for Discerning Biomolecular Interactions. Anal Chem 77:1601–1606

    CAS  Google Scholar 

  57. Zribi A, Knobloch A, Rao R (2005) CO2 detection using carbon nanotube networks and micromachined resonant transducers. Appl Phys Lett 86:203112–20115

    Google Scholar 

  58. Mukhopadhyay R, Lorentzen M, Kjems J, Besenbacher F Nanomechanical Sensing of DNA Sequences Using Piezoresistive Cantilevers. Langmuir ASAP Article S0743–7463(05)01168–6

  59. Campbell GA, Mutharasan R (2005) Detection of pathogen Escherichia coli O157:H7 using self-excited PZTglass microcantilevers. Biosens Bioelectron 21:462–473

    CAS  Google Scholar 

  60. Gfeller KY, Nugaeva N, Hegner M (2005) Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosens Bioelectron 21:528–533

    CAS  Google Scholar 

  61. Agostona A, Keplinger F, Jakoby B (2005) Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids. Sens Actuators A 123–124:82–86

    Google Scholar 

  62. Lee Y, Lim G, Moon W (2005) A piezoelectric micro-cantilever bio-sensor using the mass-microbalancing technique with self-excitation 13. Int Conf Solid-State Sensors Actuators Microsyst (Transducers 05) Proceedings 644–647

  63. Vancura C, Ruegg M, Li Y, Hagleitner C, Hierlemann A (2005) Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems. Anal Chem 77:2690–2699

    CAS  Google Scholar 

  64. Han LH, Chen S (2005) Wireless bimorph micro-actuators by pulsed laser heating. Sens Actuators A 121:35–43

    Google Scholar 

  65. Lin YC, Ono T, Esashi M (2005) Quartz-crystal cantilevered resonator for nanometric sensing 13. Int Conf Solid-State Sensors Actuators Microsyst (Transducers 05) Proceedings 593–596

  66. Vidic A, Then D, Ziegler C (2003) A new cantilever system for gas and liquid sensing. Ultramicroscopy 97:407–416

    CAS  Google Scholar 

  67. Zhang W, Turner KL (2005) Application of parametric resonance amplification in a single-crystal silicon microoscillator based mass sensor. Sens Actuators A 122:23–30

    Google Scholar 

  68. Dohn S, Sandberg R, Svendsen W, Boisen A (2005) Enhanced functionality of cantilever based mass sensors using higher modes and functionalized particles 13. Int Conf Solid-State Sensors Actuators Microsyst (Transducers 05) Proceedings 636–639

  69. Vancura C, Li Y, Kirstein KU, Josse F, Hierlemann A, Lichtenberg J (2005) Fully integrated CMOS resonant cantilever sensor for biochemical detection in liquid environments 13. Int Conf Solid-State Sensors Actuators Microsyst (Transducers 05) Proceedings 640–643

  70. Seo JH, Brand O (2005) Novel high Q-factor resonant microsensor platform for chemical and biological applications 13. Int Conf Solid-State Sensors Actuators Microsyst (Transducers 05) Proceedings 247–251

  71. Burg TB, Manalis SR (2003) Suspended microchannel resonators for biomolecular detection. Appl Phys Lett 83:2698–2700

    CAS  Google Scholar 

  72. Ferrari V, Marioli D, Taroni A (2001) Theory, modeling and characterization of PZT-on-alumina resonant piezo-layers as acoustic-wave mass sensors. Sens Actuators A 92:182–190

    Google Scholar 

  73. Schreiter M, Gabl R, Pitzer D, Primig R, Wersing W (2004) Electro-acoustic hysteresis behaviour of PZT thin film bulk acoustic resonators. J European Ceramic Soc 24:1589–1592

    CAS  Google Scholar 

  74. Ferrari M, Ferrari V, Marioli D, Taroni A, Suman M, Dalcanale E (2004) Cavitand-coated PZT resonant piezo-layer sensors: properties, structure, and comparison with QCM sensors at different temperatures under exposure to organic vapors. Sens Actuators B 103:240–246

    Google Scholar 

  75. Kang YR, Kang SC, Paek KK, Kim YK, Kim SW, Ju BK (2005) Air-gap type film bulk acoustic resonator using flexible thin substrate. Sens Actuators A 117:62–70

    Google Scholar 

  76. Nicu L, Guirardel M, Chambosse F, Rougerie P, Hinh S, Trevisiol E, Francois JM, Majoral JP, Caminade AM, Cattand E, Bergaud C (2005) Resonating piezoelectric membranes for microelectromechanically based bioassay: detection of streptavidin-gold nanoparticles interaction with biotinylated DNA. Sens Actuators B 110:125–136

    Google Scholar 

  77. Huang CL, Tay KW, Wu L (2005) Fabrication and performance analysis of film bulk acoustic wave resonators. Materials Lett 59:1012–1016

    CAS  Google Scholar 

  78. Hauptmann P, Hoppe N, Püttmer A (2002) Application of ultrasonic sensors in the process industry. Meas Sci Technol 13:R73–R83

    CAS  Google Scholar 

  79. Püttmer A, Linzenkirchner E, Hauptmann P (2004) Ultraschallsensoren für die Prozesstechnik. atp 46:S51–S59

    Google Scholar 

  80. Ladabaum I, Khuri-Yakub BT, Spoliansky D (1996) Micromachined ultrasonic transducers (MUTs): 11.4 MHz transmission in air and More. Appl Phys Lett 68:7–9

    CAS  Google Scholar 

  81. Eccardt P, Niederer K, Scheiter T, Hierold C (1996) IEEE Ultrason Symp Proceedings vol. 2:959–962

  82. Jin X, Ladabaum I, Khuri-Yakub BT (1998) The microfabrication of capacitive ultrasonic transducers. IEEE J Microelectromech Syst 7:295–302

    CAS  Google Scholar 

  83. Bayram B, Oralkan O, Ergun AS, Haeggstrom E, Yaralioglu GG, Khuri-Yakub BT (2005) Capacitive micromachined ultrasonic transducer design for high power transmission. IEEE Trans Ultrason Ferroelec Freq Contr 52:326–339

    Google Scholar 

  84. Huang Y, Haeggstrom EO, Zhuang X, Ergun AS, Khuri-Yakub BT (2005) A solution to the charging problems in capacitive micromachined ultrasonic transducers. Trans Ultrason Ferroelec Freq Contr 52:578–580

    Google Scholar 

  85. Caliano G, Savoia A, Caronti A, Foglietti V, Cianci E, Pappalardo M (2005) Capacitive micromachined ultrasonic transducer with an open-cells structure. Sens Actuators A 121:382–387

    Google Scholar 

  86. Guldiken RO, Degertekin FL (2005) Micromachined capacitive transducer arrays for intravascular ultrasound imaging MEMS Proceedings 315–318

  87. Perçin G, Atalar A, Levent Degertekin F, Khuri-Yakub BT (1998) Micromachined two-dimensional array piezoelectrically actuated transducers. Appl Phys Lett 72:1397–1399

    Google Scholar 

  88. http://piezo.stanford.edu/library/papers/chan2.pdf

  89. Santos JP, Fernández MJ, Fontecha JL, Lozano J, Aleixandre M, García M, Gutiérrez J, Horrillo MC (2005) SAW sensor array for wine discrimination. Sens Actuators B 107:291–295

    Google Scholar 

  90. Atashbar MZ, Bejcek B, Vijh A, Singamaneni S (2005) QCM biosensor with ultra thin polymer film. Sens Actuators B 107:945–951

    Google Scholar 

  91. Matsuguchi M, Kadowaki Y, Tanaka M (2005) A QCM-based NO2 gas detector using morpholine-functional cross-linked copolymer coatings. Sens Actuators B 108:572–575

    Google Scholar 

  92. Razan F, Zimmermann C, Rebière D, Déjous C, Pistré J, Destarac M, Pavageau B (2005) Radio frequency thin film characterization with polymer-coated Love-wave sensor. Sens Actuators B 108:917–924

    Google Scholar 

  93. Rahman MA, Kwon NH, Won MS, Sang Choe E, Shim YB (2005) Functionalized Conducting Polymer as an Enzyme-Immobilizing Substrate: an amperometric glutamate microbiosensor for in vivo measurements. Anal Chem ASAP Article 10.1021

  94. Sellborn A, Andersson M, Hedlunda J, Andersson J, Berglin M, Elwing H (2005) Immune complement activation on polystyrene and silicon dioxide surfaces, Impact of reversible IgG adsorption. Mol Immunology 42:569–574

    CAS  Google Scholar 

  95. Horkay F, Horkayne-Szakaly I, Basser PJ (2005) Measurement of the osmotic properties of thin polymer films and biological tissue samples. Biomacromolecules 6:988–993

    CAS  Google Scholar 

  96. Kim SR, Kim JD, Choi KH, Chang YH (1997) NO2-sensing properties of octa(2–ethylhexyloxy)metallophthalocyanine LB films using quartz-crystal microbalance. Sens Actuators B 40:39–45

    Google Scholar 

  97. Penza M, Cassano G, Sergi A, Sterzo Lo C, Russo MV (2001) SAW chemical sensing using poly-ynes and organometallic polymer films. Sens Actuators B 81:88–98

    Google Scholar 

  98. Jakubik WP, Urbaczyk MW, Kochowski S, Bodzenta J (2003) Palladium and phthalocyanine bilayer films for hydrogen detection in a surface acoustic wave sensor system. Sens Actuators B 96:321–328

    Google Scholar 

  99. Ricco AJ, Crooks RM, Osbourn GC (1998) Surface acoustic wave chemical sensor arrays: new chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures. Accounts Chem Research 31:289–296

    CAS  Google Scholar 

  100. Heila C, Windscheif GR, Braschohs S, Flörke J, Gläser J, Lopez M, Müller-Albrecht J, Schramm U, Bargon J, Vögtle F (1999) Highly selective sensor materials for discriminating carbonyl compounds in the gas phase using quartz microbalances. Sens Actuators B 61:51–58

    Google Scholar 

  101. Schlupp M, Weil T, Berresheim AJ, Wiesler UM, Bargon J, Müllen K (2001) Polyphenylen-Dendrimere als empfindliche und selektive Sensorschichten. Angew Chem 113:4124–4129

    Google Scholar 

  102. Zhao H, Li J, Xi F, Jiang L (2004) Polyamidoamine dendrimers inhibit binding of Tat peptide to TAR RNA. FEBS Lett 563:241–245

    CAS  Google Scholar 

  103. Koshets IA, Kazantseva ZI, Shirshov YM, Cherenok SA, Kalchenko VI (2005) Calixarene films as sensitive coatings for QCM-based gas sensors. Sens Actuators B: 106:177-181

    Google Scholar 

  104. Ersöz A, Denizli A, Özcan A, Say R (2005) Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance. Biosens Bioelectron 20:2197–2202

    Google Scholar 

  105. Piacham T, Josell Å, Arwin H, Prachayasittikul V, Ye L (2005) Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator. Anal Chim Acta 536:191–196

    CAS  Google Scholar 

  106. Rick J, Chou TC (2005) Imprinting unique motifs formed from protein-protein associations. Anal Chim Acta 542:26–31

    CAS  Google Scholar 

  107. Feng L, Liu Y, Zhou X, Hu J (2005) The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers. J. Colloid Interface Sci 284:378–382

    CAS  Google Scholar 

  108. Ebarvia BS, Cabanilla S, Sevilla F III (2005) Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electrosynthesized polypyrrole. Talanta 66:145–152

    CAS  Google Scholar 

  109. Lee SW, Yang DH, Kunitake T (2005) Regioselective imprinting of anthracenecarboxylic acids onto TiO2 gel ultrathin films: an approach to thin film sensor. Sens Actuators B 104:35–42

    Google Scholar 

  110. Zhang Z, Li H, Liao H, Nie L, Yao S (2005) Influence of cross-linkers’ amount on the performance of the piezoelectric sensor modified with molecularly imprinted polymers. Sens Actuators B 105:176–182

    Google Scholar 

  111. Ebarvia BS, Sevilla F III (2005) Piezoelectric quartz sensor for caffeine based on molecularly imprinted polymethacrylic acid. Sens Actuators B 107:782–790

    Google Scholar 

  112. Reddy S, Stevenson D, Hawkins DM Molecular Imprinting of Proteins in Hydrogels. Possibilities for Novel Sensing of Biomolecules. Biosensor & Biomaterials Workshop 2005, Tsukuba, Japan, to be published in The Analyst

  113. Yoshimi Y, Sekine S, Hattori K, Kohori F, Sakai K Gate Effect: biomimetric receptors synthesized by molecular imprinting. Biosensor & Biomaterials Workshop 2005, Tsukuba, Japan, to be published in The Analyst

  114. Yang DH, Bae AH, Koumoto K, Lee SW, Sakurai K, Shinkai S (2005) In situ monitoring of polysaccharide-polynucleotide interaction using a schizophyllan-immobilized QCM device. Sens Actuators B 105:490–494

    Google Scholar 

  115. Tsai WC, Lin IC (2005) Development of a piezoelectric immunosensor for the detection of alpha-fetoprotein. Sens Actuators B 106:455–460

    Google Scholar 

  116. Loergen JW, Kreutz C, Bargon J, Krattiger P, Wennemers H (2005) Diketopiperazine receptors: highly selective layers for gravimetric sensors. Sens Actuators B 107:366–371

    Google Scholar 

  117. Boireau W, Zeeh JC, Puig PE, Pompon D (2005) Unique supramolecular assembly of a redox protein with nucleic acids onto hybrid bilayer: towards a dynamic DNA chip. Biosensors, Bioelectron 20:1631–1637

    CAS  Google Scholar 

  118. Gronewold TM, Glass S, Quandt E, Famulok M (2005) Monitoring complex formation in the blood coagulation cascade using aptamer-coated SAW sensors. Biosens Bioelectron 20:2044–2052

    CAS  Google Scholar 

  119. Melles E, Anderson H, Wallinder D, Shafqat J, Bergman T, Aastrup T, Jornvall H (2005) Electroimmobilization of proinsulin C-peptide to a quartz crystal microbalance sensor chip for protein affinity purification. Anal Biochem 341:89–93

    CAS  Google Scholar 

  120. Janshoff A, Steinem C (2005) Label-free detection of protein-ligand interactions by the quartz crystal microbalance. Methods Mol Biol 305:47–64

    CAS  Google Scholar 

  121. Liu SF, Li JR, Jiang L (2005) Surface modification of platinum quartz crystal microbalance by controlled electrodeless deposition of gold nanoparticles and its enhancing effect on the HS–DNA immobilization. Colloids Surfaces A 257–258:57–62

    Google Scholar 

  122. Stengel G, Höök F, Knoll W (2005) Viscoelastic modeling of template-directed DNA synthesis. Anal Chem 77:3709–3714

    CAS  Google Scholar 

  123. Matsuno H, Furusawa H, Okahata Y (2005) Kinetic studies of DNA cleavage reactions catalyzed by an ATP-dependent deoxyribonuclease on a 27-MHz quartz-crystal microbalance. Biochemistry 44:2262–2270

    CAS  Google Scholar 

  124. Hur Y, Han J, Seon J, Pak YE, Roh Y (2005) Development of an SH-SAW sensor for the detection of DNA hybridization. Sens Actuators A 120:462–467

    Google Scholar 

  125. Mannelli I, Minunni M, Tombelli S, Wang R, Spiriti M, Mascini M (2005) Direct immobilisation of DNA probes for the development of affinity biosensors. Bioelectrochem 66:129–138

    CAS  Google Scholar 

  126. Tedeschi L, Citti L, Domenici C (2005) An integrated approach for the design and synthesis of oligonucleotide probes and their interfacing to a QCM-based RNA biosensor. Biosens Bioelectron 20:2376–2385

    CAS  Google Scholar 

  127. Liu S, Liu Y, Li J, Guo M, Nie L, Yao S (2005) Study on the interaction between DNA and protein induced by anticancer drug carboplatin. J Biochem Biophys Methods 63:125–136

    CAS  Google Scholar 

  128. Alessandrini A, De Renzi V, Berti L, Barak I, Facci P (2005) Chemically homogeneous, silylated surface for effective DNA binding and hybridization. Surface Science 582:202–208

    CAS  Google Scholar 

  129. Darain F, Park DS, Park JS, Shim YB (2004) Development of an immunosensor for the detection of vitellogenin using impedance spectroscopy. Biosens Bioelectron 19:1245–1252

    CAS  Google Scholar 

  130. Kurosawa S, Nakamura M, Park JW, Aizawa H, Yamada K, Hirata M (2004) Evaluation of a high-affinity QCM immunosensor using antibody fragmentation and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer. Biosens Bioelectron 20:1134–1139

    CAS  Google Scholar 

  131. Bonroy K, Friedt JM, Frederix F, Laureyn W, Langerock S, Campitelli A, Sara M, Borghs G, Declerck B, Goddeeris P (2004) Realization and characterization of porous gold for increased protein coverage on acoustic sensors. Anal Chem 76:4299–4306

    CAS  Google Scholar 

  132. Su X, Zong Y, Richter R, Knoll W (2005) Enzyme immobilization on poly(ethylene-co-acrylic acid) films studied by quartz crystal microbalance with dissipation monitoring. J Colloid Interface Sci 287:35–42

    CAS  Google Scholar 

  133. Rick J, Chou TC (2005) Imprinting unique motifs formed from protein-protein associations. Anal Chim Acta 542:26–31

    CAS  Google Scholar 

  134. Li J, Thielemann C, Reuning U, Johannsmann D (2005) Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators: evaluation in the impedance analysis mode. Biosens Bioelectron 20:1333–1340

    CAS  Google Scholar 

  135. Joseph S, Gronewold TMA, Schlensog MD, Olbrich C, Quandt E, Famulok M, Schirner M (2005) Specific targeting of ultrasound contrast agent (USCA) for diagnostic application: an in vitro feasibility study based on SAW biosensor. Biosens Bioelectron 20:1829–1835

    CAS  Google Scholar 

  136. Skladal P, Jilkova Z, Svoboda I, Kolar V (2005) Investigation of osteoprotegerin interactions with ligands and antibodies using piezoelectric biosensors. Biosens Bioelectron 20:2027–2034

    CAS  Google Scholar 

  137. Zhang Y, Wang M, Xie Q, Wen X, Yao S (2005) Monitoring of the interaction of tannin with bovine serum albumin by electrochemical quartz-crystal impedance system and fluorescence spectrophotometry. Sens Actuators B 105:454–463

    Google Scholar 

  138. Oshima K, Nakajima H, Takahashi S, Kera Y, Shimomura M, Miyauchi S (2005) Quartz crystal microbalance assay for determination of plasma vitellogenin. Sens Actuators B 105:473–478

    Google Scholar 

  139. Michalzik M, Wendler J, Rabe J, Büttgenbach S, Bilitewski U (2005) Development and application of a miniaturised quartz crystal microbalance (QCM) as immunosensor for bone morphogenetic protein-2. Sens Actuators B 105:508–515

    Google Scholar 

  140. Prachayasittikul V, Na Ayudhya CI, Hilterhaus L, Hinz A, Tantimongcolwat T, Galla HJ (2005) Interaction analysis of chimeric metal-binding green fluorescent protein and artificial solid-supported lipid membrane by quartz crystal microbalance and atomic force microscopy. Biochem Biophys Res Commun 327:174–182

    CAS  Google Scholar 

  141. Le Guillou-Buffello D, Helary G, Gindre M, Pavon-Djavid G, Laugier P, Migonney V (2005) Monitoring cell adhesion processes on bioactive polymers with the quartz crystal resonator technique. Biomaterials 26:4197–4205

    Google Scholar 

  142. Tomchenko AA, Harmer GP, Marquis BT (2005) Detection of chemical warfare agents using nanostructured metal oxide sensors. Sens Actuators B 108:41–55

    Google Scholar 

  143. Si SH, Fung YS, Zhu DR (2005) Improvement of piezoelectric crystal sensor for the detection of organic vapors using nanocrystalline TiO2 films. Sens Actuators B 108:165–171

    Google Scholar 

  144. Sun H, Zhang YY, Si SH, Zhu DR, Fung YS (2005) Piezoelectric quartz crystal (PQC) with photochemically deposited nano-sized Ag particles for determining cyanide at trace levels in water. Sens Actuators B 108:925–932

    Google Scholar 

  145. Wang H, Wu J, Li J, Ding Y, Shen G, Yu R (2005) Nanogold particle-enhanced oriented adsorption of antibody fragments for immunosensing platforms. Biosens Bioelectron 20:2210–2217

    CAS  Google Scholar 

  146. Mo ZH, Liang YL, Wang HL, Liu FW, Xue YX (2005) Microgravimetric flow analysis of nucleic acid based on adsorption of nanoparticle-bioconjugate. Anal Bioanal Chem 382:996–1000

    CAS  Google Scholar 

  147. http://www.q-sense.com/

  148. Auld BA Acoustic Fields and Waves in Solids vol. 1+2 Krieger Publ. Comp. 1990

  149. Tiersten HF (1969) Linear Piezoelectric Plate Vibrations. Plenum, New York

    Google Scholar 

  150. Mason WP (1969) Physical Acoustic and the Properties of Solids. Van Nostrand Co.

  151. Rosenbaum JF (1988) Bulk Acoustic Wave Theory and Devices. Artech, Boston

    Google Scholar 

  152. Nowotny H, Benes E (1970) General one-dimensional treatment of the layered piezoelectric resonator with two electrodes. Electron Lett 6:398–399

    Google Scholar 

  153. Krimholtz R, Leedom DA, Matthaei GL (1970) New equivalent circuits for elementary piezoelectric transducers. J Acoust Soc Amer 82:513–521

    Google Scholar 

  154. Martin SJ, Granstaff VE, Frye GC (1991) Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal Chem 63:2272–2281

    CAS  Google Scholar 

  155. Johannsmann D, Mathauer K, Wegner G, Knoll W (1992) Viscoelastic properties of thin films probed with a quartz-crystal resonator. Phys Rev B 46:7808–7815

    Google Scholar 

  156. Granstaff VE, Martin SJ (1994) Characterization of a thickness-shear mode quartz resonator with multiple nonpiezioelectric layers. J Appl Phys 75:1319–1329

    CAS  Google Scholar 

  157. Martin SJ, Frye GC, Senturia SD (1994) Dynamics and response of polymer-coated surface acoustic wave devices: effect of viscoelastic properties and film resonance. Anal Chem 66:2201–2219

    CAS  Google Scholar 

  158. Behling C, Lucklum R, Hauptmann P (1998) Response of quartz-crystal resonators to gas and liquid analyte exposure. Sens Actuators A 68:388–398

    Google Scholar 

  159. Bandey HL, Martin SJ, Cernosek RW (1999) Modeling the response of thickness-shear mode resonators under various loading conditions. Anal Chem 71:2205–2214

    CAS  Google Scholar 

  160. Lucklum R, Behling C, Hauptmann P (1999) Role of mass accumulation and iscoelastic film properties for the response of acoustic-wave-based chemical sensors. Anal Chem 71:2488–2496

    CAS  Google Scholar 

  161. Lucklum R, Hauptmann P (2000) The quartz crystal microbalance: mass sensitivity, viscoelasticity and acoustic amplification. Sens Actuators B 70:30–36

    Google Scholar 

  162. Behling C, Lucklum R, Hauptmann P (1997) Possibilities and limitations in quantitative determination of polymer shear parameters by TSM resonators. Sensors and Actuators A 61:260–266

    Google Scholar 

  163. Rodahl M, Kasemo B (1996) Frequency and dissipation-factor responses to localized liquid deposits on a QCM electrode. Sens Actuators B 37:111–116

    Google Scholar 

  164. Behling C, Lucklum R, Hauptmann P (1998) The non-gravimetric quartz crystal resonator response and its application for polymer shear moduli determination. Meas Sci Technol 9:1886–1893

    CAS  Google Scholar 

  165. Lucklum R, Behling C, Hauptmann P (2001) Signal amplification with multilayer arrangements on chemical quartz-crystal-resonator sensors. IEEE Trans Ultrason Ferroel Freq. Contr 47:1246–1252

    Google Scholar 

  166. Dormack A, Prucker O, Rühe J, Johannsmann D (1997) Swelling of a polymer brush probed with a quartz crystal resonator. Phys Rev E 56:680–689

    Google Scholar 

  167. Lucklum R, Hauptmann P (2003) Transduction mechanism of acoustic-wave based chemical and biochemical sensors. Meas Sci Technol 14:1854–1864

    CAS  Google Scholar 

  168. Lucklum R (2005) Non-Gravimetric Contributions to QCR Sensor Response. Analyst 130:1465–1473

    CAS  Google Scholar 

  169. Voinova MV, Jonson M, Kasemo B (2002) ’Missing mass’ effect in biosensor’s QCM application. Biosens Bioelectron 17:835–841

    CAS  Google Scholar 

  170. Duncan-Hewitt WC, Thompson M (1992) Four-layer theory for the acoustic shear wave sensor in liquids incorporating interfacial slip and liquid structure. Anal Chem 64:94-105

    CAS  Google Scholar 

  171. Mak C, Daly C, Krim J (1994) Atomic-scale friction measurements on silver and chemisorbed oxygen surfaces. Thin Solid Films 253:190–193

    CAS  Google Scholar 

  172. Rodahl M, Kasemo B (1996) On the measurement of thin liquid overlayers with the quartz-crystal microbalance. Sens Actuators A 54:448–456

    Google Scholar 

  173. Hayward GL, Thompson M (1998) A transverse shear model of a piezoelectric chemical sensor. J Appl Phys 83:2194–2201

    CAS  Google Scholar 

  174. McHale G, Lucklum R, Newton MI, Cowen JA, Hauptmann P (2000) Influence of viscoelasticity and interfacial slip on acoustic wave sensors. J Appl Phys 88:7304–7312

    CAS  Google Scholar 

  175. Daikhin L, Gileadi E, Tsionsky V, Urbakh M, Zilberman G (2000) Slippage at adsorbate-electrolyte interface response of electrochemical quartz crystal microbalance to adsorption. Electrochim Acta 45:3615–3621

    CAS  Google Scholar 

  176. Ellis JS, McHale G, Hayward GL, Thompson M (2003) Contact angle-based predictive model for slip at the solid-liquid interface of a transverse-shear mode acoustic wave device. J Appl Phys 94:6201–6207

    CAS  Google Scholar 

  177. Ponomarev IV, Meyerovich AE (2003) Surface roughness and effective stick-slip motion. Phys Rev E 67:026302, 1–12

    Google Scholar 

  178. Theissen LA, Martin SJ, Hillman AR (2004) A model for the quartz crystal microbalance frequency response to wetting characteristics of corrugated surfaces. Anal Chem 76:796–804

    Google Scholar 

  179. Du B, Goubaidoulline I, Johannsmann D (2004) Effects of laterally heterogeneous slip on the resonance properties of quartz crystals immersed in liquids. Langmuir 24:10617–10624

    Google Scholar 

  180. Knoll W, Frank CW, Heibel C, Naumann R, Offenhäusser A, Rühe J, Schmidt EK, Shen WW, Sinner A (2000) Functional tethered lipid bilayers. Rev Molecular Biotechnol 74b:137–158

    Google Scholar 

  181. Boulbitch A, Guttenberg Z, Sackmann E (2001) Kinetics of Membrane Adhesion Mediated by Ligand-Receptor Interaction Studied with Biomimetic System. Biophys J 81:2743–2751

    CAS  Google Scholar 

  182. Cheng J-X, Pautot S, Weitz DA, Xie XS (2003) Ordering of water molecules between phospholipids bilayers visualized by coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci U S A 100:9826–9830

    CAS  Google Scholar 

  183. Goennenwein S, Tanaka M, Hu B, Moroder L, Sackmann E (2003) Functional incorporation of integrins into solid supported membranes on ultrathin films of cellulose: impact on adhesion. Biophys J 85:646–655

    Article  CAS  Google Scholar 

  184. Burgess I, Li M, Horswell SL, Szymanski G, Lipkowski J, Satija S, Majewski J (2005) Influence of the electric field on a bio-mimetic film supported on a gold electrode. Colloids Surf B 40:117–122

    CAS  Google Scholar 

  185. Martin SJ, Frye GF (1991) Polymer film characterization using quartz resonators. IEEE Ultrason Symp Proceedings 393–398

  186. Katz A, Ward MD (1996) Probing solvent dynamics in concentrated polymer films with a high frequency shear mode quartz resonator. J Appl Phys 80:4152–4163

    Google Scholar 

  187. Lucklum R, Behling C, Cernosek RW, Martin SJ (1997) Determination of complex shear modulus with thickness shear mode resonators. J Phys D Appl Phys 30:346–356

    CAS  Google Scholar 

  188. Lucklum R, Behling C, Hauptmann P, Cernosek RW, Martin SJ (1998) Error analysis of material parameter determination with quartz-crystal resonators. Sens Actuators A 66:184–192

    Google Scholar 

  189. Behling C, Lucklum R, Hauptmann P (1999) Fast three-step method for shear moduli calculation from quartz crystal resonator measurements. IEEE Trans Ultrason Ferroelec Freq Contr 46:1431–1438

    CAS  Google Scholar 

  190. Johannsmann D (1999) Viscoelastic analysis of organic thin films on quartz resonators. Macromol Chem Phys 200:501–516

    CAS  Google Scholar 

  191. Lucklum R, Hauptmann P Thin film shear modulus determination with quartz crystal resonators: a review 2001 IEEE Int Freq Contr Symp Proceedings 408–418

  192. Garrell RL, Chadwick JE (1994) Structure, reactivity and microrheology in self-assembled monolayers. Colloids Surf A 93:59–72

    CAS  Google Scholar 

  193. Bund A, Schwitzgebel G (1998) Viscoelastic Properties of Low-Viscosity Liquids Studied with Thickness-Shear Mode Resonators. Anal Chem 70:2584–2588

    CAS  Google Scholar 

  194. Berg S, Johannsmann D (2003) High speed microtribology with quartz crystal resonators. Phys Rev Lett 91:145505, 1–4

    Google Scholar 

  195. Abdelmaksoud M, Bender JW, Krim J (2004) Bridging the gap between macro- and nanotribology: a quartz crystal microbalance study of tricresylphosphate uptake on metal and oxide surfaces. Phys Rev Lett 92:176101 1–4

    Google Scholar 

  196. Cavic BA, Thompson M (2002) Interfacial nucleic acid chemistry studied by acoustic wave propagation. Anal Chim Acta 469:101–113

    CAS  Google Scholar 

  197. Bailey LE, Kambhampati D, Kanazawa KK, Knoll W, Frank CW (2002) Using surface plasmon resonance and the quartz crystal microbalance to monitor in situ the interfacial behavior of thin organic films. Langmuir 18:479–489

    CAS  Google Scholar 

  198. Schlatt-Masuth B, Hempel U, Lucklum R, Hauptmann P (2004) QCR response to attachment processes of particles IEEE Sensors. Proceedings 790–793

  199. Ellis J, Thompson M (2005) Signals from the acoustic shear wave biosensor explained. 345. WE–Heraeus Seminar. Acoustic Wave Based Sensors: Fundamentals, Concepts, New Applications

  200. Wolff O, Seydel E, Johannsmann D (1997) Viscoelastic properties of thin films studied with quartz crystal resonators. Faraday Disc 107:91–104

    CAS  Google Scholar 

  201. Johannsmann, D (2001) Derivation of the shear compliance of thin films on quartz resonators from comparison of the frequency shifts on different harmonics: a perturbation analysis. J Appl Phys 89:6356–6364

    CAS  Google Scholar 

  202. Yoshimoto M, Tokimura S, Shigenobu K, Kurosawa S, Naito M (2004) Properties of the overtone mode of the quartz crystal microbalance in a low-viscosity liquid. Anal Chim Acta 510:15–19

    CAS  Google Scholar 

  203. Hempel U, Schlatt-Masuth B, Lucklum R, Hauptmann P (2004) QCR response to formation process of nanoparticles Eurosensors XVIII Techn Digest 150–151 CD:A5_3, pp 1–4

  204. Hillman AR, Jackson A, Martin SJ (2001) The problem of uniqueness of fit for viscoelastic films on thickness shear mode resonator surfaces. Anal Chem 73:540–549

    CAS  Google Scholar 

  205. Martin SJ, Frye GC, Ricco AJ, Senturia SD (1993) Effect of surface roughness on the response of thickness shear mode resonators in liquids. Anal Chem 65:2910–2922

    CAS  Google Scholar 

  206. Urbakh M, Daikhin L (1998) Surface morphology and the quartz crystal microbalance response in liquids. Colloids Surf A 134:75–84

    CAS  Google Scholar 

  207. Daikhin L, Gileadi E, Katz G, Tsionsky V, Urbakh M, Zagidulin D (2002) Influence of roughness on the admittance of the quartz crystal microbalance immersed in liquids. Anal Chem 74:554–561

    CAS  Google Scholar 

  208. Kuroiwa M, Nakazawa M (2002) An analysis of plate surface roughness effect for AT-cut resonators, IEEE Frequency Control Symposium Proceedings 242–247

  209. EerNisse EP (1972) Simultaneous Thin-Film Stress and Mass-Change Measurements Using Quartz Resonators. J Appl Phys 43:1330–1337

    CAS  Google Scholar 

  210. Barthé PG, Benkeser PJ (1987) A staircase model of tapered piezoelectric transducers. IEEE Ultrason Symp Proceedings 697–700

  211. Martin BA, Hager HE (1989) Velocity profile on quartz crystals oscillating in liquids. J Appl Phys 65:2630–2635

    Google Scholar 

  212. Tessier L, Patat F, Schmitt N, Feuillard G, Thompson M (1994) Effect of the generation of compressional waves on the response of the thickness-shear mode acoustic wave sensor in liquids. Anal Chem 66:3569–3574

    CAS  Google Scholar 

  213. Lin Z, Ward MD (1995) The role of longitudinal waves in quartz crystal microbalance applications. Anal Chem 67:685–693

    CAS  Google Scholar 

  214. Schneider TW, Martin SJ (1995) Influence of compressional wave generation on thickness-shear mode resonator response in a fluid. Anal Chem 67:3324–3335

    CAS  Google Scholar 

  215. Lucklum R, Schranz S, Behling C, Eichelbaum F, Hauptmann P (1997) Analysis of compressional-wave influence on thickness-shear-mode resonators in liquids. Sens Actuators A 60:40–48

    Google Scholar 

  216. Mc Kenna L, Newton MI, McHale G, Lucklum R, Schroeder J (2001) Compressional acoustic wave generation in microdroplets of water in contact with quartz crystal resonators. J Appl Phys 89:676–680

    CAS  Google Scholar 

  217. Lucklum R, Hauptmann P (2002) Generalized Acoustic Parameters of Non-Homogeneous Thin Films IEEE Int Freq Contr Symp Proceedings 234–241

  218. Ricco AJ, Martin SJ, Zipperian TE (1985) Surface acoustic wave gas sensor based on film conductivity changes. Sensors Actuators 8:319–333

    CAS  Google Scholar 

  219. Shana ZA, Zong H, Josse F, Jeutter DC (1994) Analysis of electrical equivalent circuit of quartz crystal resonator loaded with viscous conductive liquids. J Electroanal Chem 379:21–33

    Google Scholar 

  220. Shana ZA, Josse F (1994) Quartz crystal resonators as sensors in liquids using the acoustoelectric effect. Anal Chem 66:1955–1964

    CAS  Google Scholar 

  221. Lee Y, Everhart D, Josse F (1996) The quartz crystal resonator as a detector of electrical loading: An analysis of sensing mechanism IEEE Int Freq Contr Symp Proceedings 577–585

  222. Ghafouri S, Thompson M (2001) Electrode modification and the response of the acoustic shear wave device operating in liquids. Analyst 126:2159–2167

    CAS  Google Scholar 

  223. Zhang C, Vetelino J (2001) A bulk acoustic wave resonator for sensing liquid electrical property changes IEEE Int Freq Contr Symp Proceedings 535–541

  224. Lee PCY (1989) Electromagnetic radiation from an AT-cut quartz plate under lateral-field excitation. J Appl Phys 65:1395–1399

    CAS  Google Scholar 

  225. Hu Y, French LA Jr, Radecsky K, da Cunha MP, Millard P, Vetelino JF (2004) A lateral field excited liquid acoustic wave sensor. Trans Ultrason Ferroelectr Freq Contr 51:1373–1380

    Google Scholar 

  226. Hu Y, Pinkham W, French LA Jr, Frankel D, Vetelino JF (2005) Pesticide detection using a lateral field excited acoustic wave sensor. Sens Actuators B 108:910–916

    Google Scholar 

  227. Bjurström J, Katardjiev I, Yantchev V (2005) Lateral-field-excited thin-film Lamb wave resonator. Appl Phys Lett 86:154103–154105

    Google Scholar 

  228. Laschitsch A, Menges B, Johannsmann D (2000) Simultaneous determination of optical and acoustic thicknesses of protein layers using surface plasmon resonance spectroscopy and quartz crystal microweighing. Appl Phys Lett 77:2252–2254

    CAS  Google Scholar 

  229. Kim J, Yamasaki R, Park J, Jung H, Lee H, Kawai T (2004) Highly dense protein layers confirmed by atomic force microscopy and quartz crystal microbalance. J Bioscience Bioeng 97:138–140

    CAS  Google Scholar 

  230. Smith AL, Shirazi HM (2005) Principles of quartz crystal microbalance/heat conduction calorimetry: measurement of the sorption enthalpy of hydrogen in palladium. Thermochim Acta 432:202–211

    CAS  Google Scholar 

  231. Shevade AV, Ryan MA, Homer ML, Kisor AK, Manatt KS, Lin B, Fleurial JP, Manfred AM, Yen SPS (2005) Calorimetric measurements of heat of sorption in polymer films: A molecular modeling and experimental study. Anal Chim Acta 543:242–248

    CAS  Google Scholar 

  232. Fadel L, Zimmermann C, Dufour I, Dejous C, Rebiere D, Pistre J (2005) Coupled determination of gravimetric and elastic effects on two resonant chemical sensors: love wave and microcantilever platforms. IEEE Trans Ultrason Ferroelectr Freq Contr 52:297–303

    Google Scholar 

  233. Su X, Wu YJ, Robelek R, Knoll W (2005) Surface plasmon resonance spectroscopy and quartz crystal microbalance study of MutS binding with single thymine-guanine mismatched DNA. Front Biosci 10:268–274

    CAS  Google Scholar 

  234. Su XX, Wu YJ, Robelek R, Knoll WW (2005) Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization. Langmuir 21:348–353

    CAS  Google Scholar 

  235. Zhang H, Zhao R, Chen Z, Shangguan DH, Liu G (2005) QCM–FIA with PGMA coating for dynamic interaction study of heparin and antithrombin III. Biosens Bioelectron 21:121–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Lucklum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucklum, R., Hauptmann, P. Acoustic microsensors—the challenge behind microgravimetry. Anal Bioanal Chem 384, 667–682 (2006). https://doi.org/10.1007/s00216-005-0236-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0236-x

Keywords

Navigation