Skip to main content
Log in

The use of nanoparticles in electroanalysis: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanoparticles can display four unique advantages over macroelectrodes when used for electroanalysis: enhancement of mass transport, catalysis, high effective surface area and control over electrode microenvironment. Therefore, much work has been carried out into their formation, characterisation and employment for the detection of many electroactive species. This paper aims to give an overview of the investigations carried out in this field. Particular attention is paid to examples of the advantages and disadvantages nanoparticles show when compared to macroelectrodes and the advantages of one nanoparticle modification over another. Most work has been carried out using gold, silver and platinum metals. However, iron, nickel and copper are also reviewed with some examples of other metals such as iridium, ruthenium, cobalt, chromium and palladium. Some bimetallic nanoparticle modifications are also mentioned because they can cause unique catalysis through the mixing of the properties of both metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 a–e

Similar content being viewed by others

Notes

  1. In a recent paper Davies et al. have shown that the distance required in order to ensure diffusional independence for nanoparticles in an array has a more complicated dependence than 10r. Davies et al. demonstrate that the actual distance depends upon the radius of the nanoparticles, the diffusion coefficient of the active species and the scan rate employed. Calculations in the paper have shown that the minimum distance required can often be larger than 10r, depending on the voltammetric time scales employed [9].

  2. This is an extremely useful conceptual limit, contrasting with so called “progressive” nucleation despite attempts to discredit the notion [78, 79].

References

  1. Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Chem Commun 7:829

    Google Scholar 

  2. Dai X, Nekrassova O, Hyde ME, Compton RG (2004) Anal Chem 76:5924

    CAS  Google Scholar 

  3. Zhong Z, Chen H, Tang S, Ding J, Lin J, Tan KL (2000) Chem Phys Lett 330:41

    CAS  Google Scholar 

  4. Narayan J, Tiwari A (2005) Methods of forming three-dimensional nanodot arrays in a matrix. PCT Int Appl An 2005:141403

    Google Scholar 

  5. Phung X, Groza J, Stach EA, Williams LN, Ritchey SB (2003) Mater Eng A359:261

    CAS  Google Scholar 

  6. Katz E, Willner I, Wang J (2004) Electroanalysis 16:19

    CAS  Google Scholar 

  7. Simm AO, Ward-Jones S, Banks CE, Compton RG (2005) Anal Sci 21:667

    CAS  Google Scholar 

  8. Bard AJ, Faulkner LR (1982) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  9. Davies TJ, Compton RG (2005) J Electroanal Chem 585:63

    CAS  Google Scholar 

  10. Raj CR, Okajima T, Ohsaka T (2003) J Electroanal Chem 543:127

    CAS  Google Scholar 

  11. Rellinghaus B, Stappert S, Wassermann EF, Sauer H, Spliethoff B (2001) Eur Phys J D16:249

    CAS  Google Scholar 

  12. Welch CM, Hyde ME, Banks CE, Compton RG (2005) Anal Sci 21:1421

    CAS  Google Scholar 

  13. Miscoria SA, Barrera GD, Rivas GA (2005) Electroanalysis 17:1578

    CAS  Google Scholar 

  14. Gilbert B, Huang F, Zhang H, Waychunas GA, Banfield JF (2004) Science 305:651

    CAS  Google Scholar 

  15. Vidal-Iglesias FJ, Solla-Gullon J, Rodriguez P, Herrero E, Montiel V, Feliu JM, Aldaz A (2004) Electrochem Commun 6:1080

    CAS  Google Scholar 

  16. Rodriguez P, Herrero E, Solla-Gullon J, Vidal-Iglesias FJ, Aldaz A, Feliu JM (2005) Electrochim Acta 50:4308

    CAS  Google Scholar 

  17. Solla-Gullon J, Vidal-Iglesias FJ, Rodriguez P, Herrero E, Feliu JM, Clavilier J, Aldaz A (2004) J Phys Chem B 108:13573

    CAS  Google Scholar 

  18. Hrapovic S, Liu Y, Male KB, Luong JHT (2004) Anal Chem 76:1083

    CAS  Google Scholar 

  19. Wu S-H, Chen D-H (2003) J Colloid Interf Sci 259:282

    CAS  Google Scholar 

  20. Kurihara LK, Chow GM, Schoen PE (1995) Nanostruct Mater 5:607

    CAS  Google Scholar 

  21. Winter M (2005) WebElements: The periodic table on the World Wide Web (see http://www.webelements.com/)

  22. Sigma-Aldrich (2005) Sigma-Aldrich online catalogue. Sigma-Aldrich, St Louis, MO (see http://www.sigmaaldrich.com)

  23. Welch CM, Nekrassova O, Compton RG (2005) Talanta 65:74

    CAS  Google Scholar 

  24. Welch CM, Hyde ME, Nekrassova O, Compton RG (2004) Phys Chem Chem Phys 6:3153

    CAS  Google Scholar 

  25. Simm AO, Banks CE, Compton RG (2005) Electroanalysis 17:335

    CAS  Google Scholar 

  26. Vandeberg PJ, Johnson DC (1993) Anal Chem 65:2713

    CAS  Google Scholar 

  27. Johnson DC, LaCourse WR (1990) Anal Chem 62:589A

    CAS  Google Scholar 

  28. Burton SG (1994) Catal Today 22:459

    CAS  Google Scholar 

  29. Yu A, Liang Z, Cho J, Caruso F (2003) Nano Lett 3:1203

    CAS  Google Scholar 

  30. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    CAS  Google Scholar 

  31. Liu S, Ju H (2003) Electroanalysis 15:1488

    CAS  Google Scholar 

  32. Song Y, Jimenez V, McKinney C, Donkers R, Murray RW (2003) Anal Chem 75:5088

    CAS  Google Scholar 

  33. Maye MM, Luo J, Lin Y, Engelhard MH, Hepel M, Zhong C-J (2003) Langmuir 19:125

    CAS  Google Scholar 

  34. Wilcoxon JP, Martin JE, Provencio P (2000) Langmuir 16:9912

    CAS  Google Scholar 

  35. Pihel K, Walker QD, Wightman RM (1996) Anal Chem 68:2084

    CAS  Google Scholar 

  36. Malem F, Mandler D (1993) Anal Chem 65:37

    CAS  Google Scholar 

  37. Montenegro MCBSM, Sales MGF (2000) J Pharm Sci 89:876

    CAS  Google Scholar 

  38. Liang R, Qiu J, Cai P (2005) Anal Chim Acta 534:223

    CAS  Google Scholar 

  39. Schmitt J, Decher G, Dressick WJ, Brandow SL, Geer RE, Shashidhar R, Calvert JM (1997) Adv Mater 9:61

    CAS  Google Scholar 

  40. Musick MD, Keating CD, Keefe MH, Natan MJ (1997) Chem Mater 9:1499

    CAS  Google Scholar 

  41. Boennemann H, Brinkmann R, Neiteler P (1994) Appl Organomet Chem 8:361

    CAS  Google Scholar 

  42. Carralero Sanz V, Mena ML, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM (2005) Anal Chim Acta 528:1

    CAS  Google Scholar 

  43. Liu S, Yu J, Ju H (2003) J Electroanal Chem 540:61

    CAS  Google Scholar 

  44. Liu S, Ju H (2003) Biosens Bioelectron 19:177

    CAS  Google Scholar 

  45. Simm AO, Banks CE, Wilkins SJ, Karousos NG, Davis J, Compton RG (2005) Anal Bioanal Chem 381:979

    CAS  Google Scholar 

  46. Welch CM, Nekrassova O, Dai X, Hyde ME, Compton RG (2004) ChemPhysChem 5:1405

    CAS  Google Scholar 

  47. Cai H, Wang Y, He P, Fang Y (2002) Anal Chim Acta 469:165

    CAS  Google Scholar 

  48. Lee TM-H, Cai H, Hsing IM (2005) Analyst 130:364

    CAS  Google Scholar 

  49. Lee TM-H, Cai H, Hsing IM (2004) Electroanalysis 16:1628

    CAS  Google Scholar 

  50. Dai X, Compton RG (2005) Electroanalysis 17:1325

    CAS  Google Scholar 

  51. El-Deab MS, Okajima T, Ohsaka T (2003) J Electrochem Soc 150:A851

    CAS  Google Scholar 

  52. Finot MO, Braybrook GD, McDermott MT (1999) J Electroanal Chem 466:234

    CAS  Google Scholar 

  53. El-Deab MS, Ohsaka T (2002) Electrochim Acta 47:4255

    CAS  Google Scholar 

  54. Brezina M, Koryta J, Musilova M (1968) Collect Czech Chem Commun 33:3397

    CAS  Google Scholar 

  55. Flatgen G, Wasle S, Lubke M, Eickes C, Radhakrishnan G, Doblhofer K, Ertl G (1999) Electrochim Acta 44:4499

    CAS  Google Scholar 

  56. Rocklin RD, Johnson EL (1983) Anal Chem 55:4

    CAS  Google Scholar 

  57. Holt RE, Cotton TM (1989) J Am Chem Soc 111:2815

    CAS  Google Scholar 

  58. Matsuura H, Sato Y, Sawaguchi T, Mizutani F (2003) Sensor Actuat B B91:148

    CAS  Google Scholar 

  59. Fan C, Song H, Hu X, Li G, Zhu J, Xu X, Zhu D (1999) Anal Biochem 271:1

    CAS  Google Scholar 

  60. Fan C, Li G, Zhuang Y, Zhu J, Zhu D (2000) Electroanalysis 12:205

    CAS  Google Scholar 

  61. Bagwe RP, Khilar KC (2000) Langmuir 16:905

    CAS  Google Scholar 

  62. Manna A, Imae T, Iida M, Hisamatsu N (2001) Langmuir 17:6000

    CAS  Google Scholar 

  63. Kamyshny A, Ben-Moshe M, Aviezer S, Magdassi S (2005) Macromol Rapid Commun 26:281

    CAS  Google Scholar 

  64. Rodriguez-Sanchez L, Blanco MC, Lopez-Quintela MA (2000) J Phys Chem B 104:9683

    CAS  Google Scholar 

  65. Reetz MT, Helbig W (1994) J Am Chem Soc 116:7401

    CAS  Google Scholar 

  66. Rodriguez-Sanchez ML, Rodriguez MJ, Blanco MC, Rivas J, Lopez-Quintela MA (2005) J Phys Chem B 109:1183

    CAS  Google Scholar 

  67. Woodley SM, Battle PD, Gale JD, Catlow CRA (1999) Phys Chem Chem Phys 1:2535

    CAS  Google Scholar 

  68. Woodley SM, Catlow CRA, Battle PD, Gale JD (2004) Chem Commun 22

  69. Woodley SM, Sokol AA, Catlow CRA (2004) Z Anorg Allg Chem 630:2343

    CAS  Google Scholar 

  70. Sandell EB (1959) Colorimetric metal analysis. Interscience, New York

    Google Scholar 

  71. Cheng W, Dong S, Wang E (2002) Electrochem Commun 4:412

    CAS  Google Scholar 

  72. Yin B, Ma H, Wang S, Chen S (2003) J Phys Chem B 2003:8898

    Google Scholar 

  73. Gan X, Liu T, Zhu X, Li G (2004) Anal Sci 20:1271

    CAS  Google Scholar 

  74. Chang G, Zhang J, Oyama M, Hirao K (2005) J Phys Chem B 109:1204

    CAS  Google Scholar 

  75. Zheng J, Li X, Gu R, Lu T (2002) J Phys Chem B 106:1019

    CAS  Google Scholar 

  76. Liu Y-C, Lin L-H (2004) Electrochem Commun 6:1163

    CAS  Google Scholar 

  77. Zoval JV, Stiger RM, Biernacki PR, Penner RM (1996) J Phys Chem 100:837

    CAS  Google Scholar 

  78. Fletcher S (2002) J Electroanal Chem 530:105

    CAS  Google Scholar 

  79. Fletcher S (2002) J Electroanal Chem 530:119

    CAS  Google Scholar 

  80. Fleischmann M, Thirsk HR (1955) Trans Faraday Soc 51:71

    CAS  Google Scholar 

  81. Fleischmann M, Liler M (1958) Trans Faraday Soc 54:1370

    CAS  Google Scholar 

  82. Abyaneh MY, Fleischmann M (1980) Trans Inst Met Finish 58:91

    CAS  Google Scholar 

  83. Reetz MT, Maase M (1999) Adv Mater 11:773

    CAS  Google Scholar 

  84. Ueda M, Dietz H, Anders A, Kneppe H, Meixner A, Plieth W (2002) Electrochim Acta 48:377

    CAS  Google Scholar 

  85. Fransaer JL, Penner RM (1999) J Phys Chem B 103:7643

    CAS  Google Scholar 

  86. Ng KH, Liu H, Penner RM (2000) Langmuir 16:4016

    CAS  Google Scholar 

  87. Welch CM, Banks CE, Simm AO, Compton RG (2005) Anal Bioanal Chem 382:12

    CAS  Google Scholar 

  88. Henglein A (1989) Chem Rev 89:1861

    CAS  Google Scholar 

  89. Plieth WJ (1982) J Phys Chem 86:3166

    CAS  Google Scholar 

  90. Markovioc NM, Gasteiger HA, Ross PN Jr (1996) J Phys Chem 100:6715

    Google Scholar 

  91. Markovic NM, Gasteiger HA, Ross PN Jr (1995) J Phys Chem 99:3411

    CAS  Google Scholar 

  92. Rodriguez JL, Pastor E (2000) Electrochim Acta 45:4279

    CAS  Google Scholar 

  93. Montilla F, Morallon E, Vazquez JL (2002) Electrochim Acta 47:4399

    CAS  Google Scholar 

  94. Kokoh KB, Leger JM, Beden B, Lamy C (1992) Electrochim Acta 37:1333

    CAS  Google Scholar 

  95. Zhang Y, Weaver MJ (1993) Langmuir 9:1397

    CAS  Google Scholar 

  96. Xia XH, Iwasita T, Ge F, Vielstich W (1996) Electrochim Acta 41:711

    CAS  Google Scholar 

  97. Silva-Chong J, Mendez E, Rodriguez JL, Arevalo MC, Pastor E (2002) Electrochim Acta 47:1441

    CAS  Google Scholar 

  98. You T, Niwa O, Tomita M, Hirono S (2003) Anal Chem 75:2080

    CAS  Google Scholar 

  99. You T, Niwa O, Horiuchi T, Tomita M, Iwasaki Y, Ueno Y, Hirono S (2002) Chem Mater 14:4796

    CAS  Google Scholar 

  100. Lai L-B, Chen D-H, Huang T-C (2001) Mater Res Bull 36:1049

    CAS  Google Scholar 

  101. Grunes J, Zhu J, Anderson EA, Somorjai GA (2002) J Phys Chem B 106:11463

    CAS  Google Scholar 

  102. Serp P, Feurer R, Kihn Y, Kalck P, Faria JL, Figueiredo JL (2001) J Mater Chem 11:1980

    CAS  Google Scholar 

  103. Elliot JM, Birkin PR, Bartlett PN, Attard GS (1999) Langmuir 15:7411

    Google Scholar 

  104. Hall SB, Khudaish EA, Hart AL (1998) Electrochim Acta 43:2015

    CAS  Google Scholar 

  105. Harriman A, Millward GR, Neta P, Richoux MC, Thomas JM (1988) J Phys Chem 92:1286

    CAS  Google Scholar 

  106. Dujardin E, Ebbesen TW, Hiura H, Tanigaki K (1994) Science 265:1850

    CAS  Google Scholar 

  107. Ebbesen TW, Hiura H, Bisher ME, Treacy MMJ, Shreeve-Keyer JL, Haushalter RC (1996) Adv Mater 8:155

    CAS  Google Scholar 

  108. Fernandez JL, Hurth C, Bard AJ (2005) J Phys Chem B 109:9532

    CAS  Google Scholar 

  109. Nagahara Y, Hara M, Yoshimoto S, Inukai J, Yau S-L, Itaya K (2004) J Phys Chem B 108:3224

    CAS  Google Scholar 

  110. Zhang L, Cheng B, Samulski ET (2004) Chem Phys Lett 398:505

    CAS  Google Scholar 

  111. Shen Y, Liu J, Wu A, Jiang J, Bi L, Liu B, Li Z, Dong S (2003) Langmuir 19:5397

    CAS  Google Scholar 

  112. Leger JM (2005) Electrochim Acta 50:3123

    CAS  Google Scholar 

  113. Tang Z, Geng D, Lu G (2005) J Colloid Interf Sci 287:159

    CAS  Google Scholar 

  114. Sine G, Comninellis C (2005) Electrochim Acta 50:2249

    CAS  Google Scholar 

  115. Arenz M, Mayrhofer KJJ, Stamenkovic V, Bilzanac BB, Tomoyuki T, Ross PN, Markovic NM (2004) J Am Chem Soc 127:6819

    Google Scholar 

  116. Mayrhofer KJJ, Arenz M, Blizanac BB, Stamenkovic V, Ross PN, Markovic NM (2005) Electrochim Acta 50:5144

    CAS  Google Scholar 

  117. Adora S, Simon Jean P, Soldo-Olivier Y, Faure R, Chainet E, Durand R (2004) ChemPhysChem 5:1178

    CAS  Google Scholar 

  118. Liu S, Tang Z, Wang E, Dong S (2000) Electrochem Commun 2:800

    CAS  Google Scholar 

  119. Lee I, Chan K-Y, Phillips DL (1998) Appl Surf Sci 136:321

    CAS  Google Scholar 

  120. Lu G, Zangari G (2005) J Phys Chem B 109:7998

    CAS  Google Scholar 

  121. He Z, Chen J, Liu D, Tang H, Deng W, Kuang Y (2004) Mater Chem Phys 85:396

    CAS  Google Scholar 

  122. Maillard F, Eikerling M, Cherstiouk OV, Schreier S, Savinova E, Stimming U (2004) Faraday Discuss 125:357

    CAS  Google Scholar 

  123. You T, Niwa O, Chen Z, Hayashi K, Tomita M, Hirono S (2003) Anal Chem 75:5191

    CAS  Google Scholar 

  124. Guo L, Huang Q, Li X-y, Yang S (2001) Phys Chem Chem Phys 3:1661

    CAS  Google Scholar 

  125. Male KB, Hrapovic S, Liu Y, Wang D, Luong JHT (2004) Anal Chim Acta 516:35

    CAS  Google Scholar 

  126. Dubois E, Chevalet J (2003) Langmuir 19:10892

    CAS  Google Scholar 

  127. Heiz U (1998) Appl Phys A 67:621

    Google Scholar 

  128. Heiz U, Vanolli F, Sanchez A, Schneider WD (1998) J Am Chem Soc 120:9668

    CAS  Google Scholar 

  129. Zach MP, Penner RM (2000) Adv Mater 12:878

    CAS  Google Scholar 

  130. Zen J-M, Hsu C-T, Kumar AS, Lyuu H-J, Lin K-Y (2004) Analyst 129:841

    CAS  Google Scholar 

  131. Zen J-M, Chung H-H, Kumar AS (2000) Analyst 125:1633

    CAS  Google Scholar 

  132. Zen J-M, Song Y-S, Chung H-H, Hsu C-T, Kumar AS (2002) Anal Chem 74:6126

    CAS  Google Scholar 

  133. Kumar AS, Zen J-M (2002) Electroanalysis 14:671

    CAS  Google Scholar 

  134. Zen J-M, Chung H-H, Kumar AS (2002) Anal Chem 74:1202

    CAS  Google Scholar 

  135. Wang H, Huang Y, Tan Z, Hu X (2004) Anal Chim Acta 526:13

    CAS  Google Scholar 

  136. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem Commun 801

  137. Ward-Jones S, Banks CE, Simm AO, Jiang L, Compton RG (2005) Electroanalysis 17:1806

    CAS  Google Scholar 

  138. Zhou XJ, Harmer AJ, Heinig NF, Leung KT (2004) Langmuir 20:5109

    CAS  Google Scholar 

  139. Sarkar DK, Zhou XJ, Tannous A, Louie M, Leung KT (2003) Solid State Commun 125:365

    CAS  Google Scholar 

  140. Hsu C-T, Chung H-H, Kumar AS, Zen J-M (2005) Electroanalysis 17:1822

    CAS  Google Scholar 

  141. Giri S, Ganguli S, Bhattacharya M (2001) Appl Surf Sci 182:345

    CAS  Google Scholar 

  142. Banerjee S, Roy S, Chen JW, Chakravorty D (2000) J Magn Magn Mater 219:45

    CAS  Google Scholar 

  143. Nikles DE, Cain JL, Chacko AP, Webb RI (1994) IEEE Trans Magn 30:4068

    CAS  Google Scholar 

  144. Cain JL, Nikles DE (1997) IEEE Trans Magn 33:3718

    CAS  Google Scholar 

  145. Cain JL, Nikles DE (1996) IEEE Trans Magn 32:4490

    CAS  Google Scholar 

  146. Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW (1991) Nature 353:414

    CAS  Google Scholar 

  147. Zaera F (1989) J Vacuum Sci Technol A 7:640

    CAS  Google Scholar 

  148. Fang B, Wang G, Zhang W, Li M, Kan X (2005) Electroanalysis 17:744

    CAS  Google Scholar 

  149. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Environ Sci Technol 39:1221

    CAS  Google Scholar 

  150. Przenioslo R, Wagner J, Natter H, Hempelmann R, Wagner W (2001) J Alloys Compd 328:259

    CAS  Google Scholar 

  151. Przenioslo R, Sosnowska I, Rousse G, Hempelmann R (2002) Phys Rev B 66:014404/1

    Article  CAS  Google Scholar 

  152. Yoon M, Kim Y, Kim YM, Yoon H, Volkov V, Avilov A, Park YJ, Park IW (2004) J Magn Magn Mater 272–276:E1259

    Google Scholar 

  153. You T, Niwa O, Kurita R, Iwasaki Y, Hayashi K, Suzuki K, Hirono S (2004) Electroanalysis 16:54

    CAS  Google Scholar 

  154. Goto T, Ono T, Hirai T (2001) Scr Mater 44:1187

    CAS  Google Scholar 

  155. Natter H, Hempelmann R (2003) Electrochim Acta 49:51

    CAS  Google Scholar 

  156. Becker JA, Schaefer R, Festag R, Ruland W, Wendorff JH, Pebler J, Quaiser SA, Helbig W, Reetz MT (1995) J Chem Phys 103:2520

    CAS  Google Scholar 

  157. Popic JP, Drazic DM (2004) Electrochim Acta 49:4877

    CAS  Google Scholar 

  158. Alder JF, Fleet B, Kane PO (1971) J Electroanal Chem 30:427

    CAS  Google Scholar 

  159. De Mattos IL, Melo D, Zagatto EAG (1999) Anal Sci 15:537

    Google Scholar 

  160. Pauporte T, Andolfatto F, Durand R (1999) Electrochim Acta 45:431

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Compton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, C.M., Compton, R.G. The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384, 601–619 (2006). https://doi.org/10.1007/s00216-005-0230-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0230-3

Keywords

Navigation