Skip to main content

Advertisement

Log in

Multiplexed SNP genotyping using nanobarcode particle technology

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Single-nucleotide polymorphisms (SNP) are the most common form of sequence variation in the human genome. Large-scale studies demand high-throughput SNP genotyping platforms. Here we demonstrate the potential of encoded nanowires for use in a particles-based universal array for high-throughput SNP genotyping. The particles are encoded sub-micron metallic nanorods manufactured by electroplating inert metals such as gold and silver into templates and releasing the resulting striped nanoparticles. The power of this technology is that the particles are intrinsically encoded by virtue of the different reflectivity of adjacent metal stripes, enabling the generation of many thousands of unique encoded substrates. Using SNP found within the cytochrome P450 gene family, and a universal short oligonucleotide ligation strategy, we have demonstrated the simultaneous genotyping of 15 SNP; a format requiring discrimination of 30 encoded nanowires (one per allele). To demonstrate applicability to real-world applications, 160 genotypes were determined from multiplex PCR products from 20 genomic DNA samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Francesco VD, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang ZY, Wang A, Wang X, Wang J, Wei MH, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu SC, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays AD, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, and Nodell M (2001) Science 291:1304–1351

    Article  CAS  Google Scholar 

  2. Morgan MJ (2001) Nature 409:860–921

    Article  Google Scholar 

  3. Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D (2001) Nature 409:928–933

    Article  Google Scholar 

  4. Kwok PY, Chen X (2003) Curr Issues Mol Bio 5:43–60

    CAS  Google Scholar 

  5. Brennan MD (2001) Am J Pharmacogenomics 1:295–302

    Article  CAS  Google Scholar 

  6. Twyman RM (2004) Curr Top Med Chem 4:1423–1431

    Article  CAS  Google Scholar 

  7. Dearlove AM (2002) Brief Funct Genomic Proteomic 1:139–150

    Article  CAS  Google Scholar 

  8. Chen J, Iannone MA, Li MS, Taylor JD, Rivers P, Nelsen AJ, Slentz-Kesler KA, Roses A, Weiner MP (2000) Genome Res 10:549–557

    Article  CAS  Google Scholar 

  9. Taylor JD, Briley D, Nguyen Q, Long K, Iannone MA, Li MS, Ye F, Afshari A, Lai E, Wagner M, Chen J, Weiner MP (2001) Biotechniques 30:661–669

    CAS  Google Scholar 

  10. Ye F, Li MS, Taylor JD, Nguyen Q, Colton HM, Casey WM, Wagner M, Weiner MP, Chen J (2001) Human Mutat 17:305–316

    Article  CAS  Google Scholar 

  11. Landegren U, Kaiser R, Sanders J, Hood L (1988) Science 241:1077–1088

    Article  CAS  Google Scholar 

  12. Iannone MA, Taylor JD, Chen J, Li MS, Rivers P, Slentz-Kesler KA, Weiner MP (2000) Cytometry 39:131–140

    Article  CAS  Google Scholar 

  13. Xu H, Sha M-Y, Wang E, Uphoff J, Xu Y, Treadway J, Truong A, O’Brien E, Asquith S, Stubbins M, Spurr N, Lai E, Mahoney WC (2003) Nucleic Acids Res. 31:e43

    Article  Google Scholar 

  14. Barker DL, Hansen MST, Faruqi AF, Giannola D, Irsula OR, Lasken RS, Latterich M, Makarov V, Oliphant A, Pinter JH, Shen R, Sleptsova I, Ziehler W, Lai E (2004) Genome Res. 14:901–907

    Article  CAS  Google Scholar 

  15. Gunderson KL, Kruglyak S, Graige MS, Garcia F, Kermani BG, Zhao C, Che D, Dickinson T, Wickham E, Bierle J, Doucet D, Milewski M, Yang R, Siegmund C, Haas J, Zhou L, Oliphant A, Fan JB, Barnard S, Chee MS (2004) Genome Res 14:870–877

    Article  CAS  Google Scholar 

  16. Evans M, Sewter C, Hill E (2004) Assay Drug Dev Technol 1:199–207

    Article  Google Scholar 

  17. Penn SG, He L, Natan MJ (2003) Curr Opin Chem Biol 7:609–615

    Article  CAS  Google Scholar 

  18. Drmanac R, Drmanac S, Chui G, Diaz R, Hou A, Jin H, Jin P, Kwon S, Lacy S, Moeur B, Shafto J, Swanson D, Ukrainczyk T, Xu C, Little D (2002) Advances in Biochemical Engineering/Biotechnology. Springer, Berlin Heidelberg New York

    Google Scholar 

  19. Nicewarner-Pena SR, Freeman G, Reiss BD, He L, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Science 294:137–141

    Article  CAS  Google Scholar 

  20. Reiss BD, Keating CD, Freeman RG, Walton ID, Norton SM, Smith PC, Stonas WG, Natan MJ (2002) J Electroanal Chem 522:95–103

    Article  CAS  Google Scholar 

  21. Walton ID, Norton SM, Balasingham A, He L, Oviso DFJ, Gupta D, Raju PA, Natan MJ, Freeman RG (2002) Anal Chem 74:2240–2247

    Article  CAS  Google Scholar 

  22. Thomas FJ, McLeod HL, Watters JW (2004) Curr Top Med Chem 4:1399–1409

    CAS  Google Scholar 

  23. Gura T (2001) Science 293:595

    Article  CAS  Google Scholar 

  24. Erichsen HC, Chanock SJ (2004) Br J Cancer 90:747–751

    Article  CAS  Google Scholar 

  25. Danielson PB (2002) Curr Drug Metab 3:561–597

    Article  CAS  Google Scholar 

  26. Pickering JW, McMillen G.A., Gedge F, Hill HR, Lyon E (2004) Am J Pharmacogenomics 4:199–207

    Article  CAS  Google Scholar 

  27. Lai E (2001) Genome Res 11:927–929

    Article  CAS  Google Scholar 

  28. Finkel NH, Lou X, Wang C, He L (2004) Anal Chem 76:352A–359A

    Article  CAS  Google Scholar 

  29. Chen J, Iannone MA, Li MS, Taylor JD, Rivers P, Nelsen AJ, Slentz-Kesler KA, Roses A, Weiner MP (2000) Genome Res 10:549–557

    Article  CAS  Google Scholar 

  30. Hardenbol P, Baner J, Jain M, Nilsson M, Namsaraev EA, Karlin-Neumann GA, Fakhrai-Rad H, Ronaghi M, Willis TD, Landegren U, Davis RW (2003) Nature Biotechnology 21:673–678

    Article  CAS  Google Scholar 

  31. van Eijk MJT, Broekhof JLN, van der Poel HJA, Hogers RCJ, Schneiders H, Kamerbeek J, Verstege E, van Aart JW, Geerlings H, Buntjer JB, van Oeveren AJ, Vos P (2004) Nucl Acids Res 32:e47

    Article  CAS  Google Scholar 

  32. Barker DL, Hansen MST, Faruqi AF, Giannola D, Irsula OR, Lasken RS, Latterich M, Makarov V, Oliphant A, Pinter JH, Shen R, Sleptsova I, Ziehler W, Lai E (2004) Genome Res 14:901–907

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Glenn Davis for developing the NBSee Software and SNP database software for nanowire decoding and SNP data analysis, Griff Freeman, Frances Wong, Barry Simkins, and Gabriela Chakarova for expertise in nanowire synthesis, and Jay Shafto for help in robotic probe handling and probe validation. This work was funded by the National Institute of Standards and Technology (Grant 70NANB1H3028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharron G. Penn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sha, M.Y., Walton, I.D., Norton, S.M. et al. Multiplexed SNP genotyping using nanobarcode particle technology. Anal Bioanal Chem 384, 658–666 (2006). https://doi.org/10.1007/s00216-005-0225-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0225-0

Keywords

Navigation