Skip to main content
Log in

Nanoscale organic and polymeric field-effect transistors as chemical sensors

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article reviews recently published work concerning improved understanding of, and advancements in, organic and polymer semiconductor vapor-phase chemical sensing. Thin-film transistor sensors ranging in size from hundreds of microns down to a few nanometers are discussed, with comparisons made of sensing responses recorded at these different channel-length scales. The vapor-sensing behavior of nanoscale organic transistors is different from that of large-scale devices, because electrical transport in a nanoscale organic thin-film transistor depends on its morphological structure and interface properties (for example injection barrier) which could be modulated by delivery of analyte. Materials used in nanoscale devices, for example nanoparticles, nanotubes, and nanowires, are also briefly summarized in an attempt to introduce other relevant nano-transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gardner JW, Bartlett PN (1999) Electronic noses: principles and applications. Oxford University Press, Oxford

    Google Scholar 

  2. Pearce TC, Schiffman SS, Nagle HT, Gardner JW (2003) (Eds), Handbook of machine olfaction, Wiley–VCH, Weinheim

  3. Ampuero S, Bosset JO (2003) Sens Actuators B 94:1

    Article  CAS  Google Scholar 

  4. Thaler ER, Kennedy DW, Hanson CW (2001) Am. J Rhinol 15:291

    PubMed  CAS  Google Scholar 

  5. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Chem Rev 100:2595

    Article  PubMed  CAS  Google Scholar 

  6. Janata J (2003) Proc IEEE, 91(6):864–869

    Article  CAS  Google Scholar 

  7. Vincenzi D, Butturi MA, Guidi V, Carotta MC, Martinelli G, Guarnieri V, Brida S, Margesin B, Giacomozzi F, Zen M (2001) Sens Actuators B 77:95

    Article  Google Scholar 

  8. Ballantine DS, White RM, Martin SJ, Ricco AJ, Zellers, ET, Frye G, Wohltjen H (1997) Acoustic wave sensors: theory, design, and physicochemical applications, Academic Press, Boston, MA

  9. Cioffi N, Farella I, Torsi L, Valentini A, Sabbatini L, Zambonin PG (2003) Sens Actuators B 93:181–186

    Article  CAS  Google Scholar 

  10. Tyler McQuade D, Pullen Anthony E, Swager Timothy M (2000) Chem Rev 100:2537–2574

    Article  PubMed  CAS  Google Scholar 

  11. Wollenstein J, Plaza JA, Cane C, Min Y, Bottner H, Tuller HL (2003) Sens Actuators B 93:350

    Article  CAS  Google Scholar 

  12. Haranyi G (1995) Polymer films in sensor applications. Technomic Publishing, Lancaster, PA, p. 58. Eggins BR (1996) Biosensors: an introduction. Wiley

  13. Burgmair M, Zimmer M, Eisele I (2003) Sens Actuators B 93:271–275

    Article  CAS  Google Scholar 

  14. Torsi L, Dodabalapur A, Sabbatini L, Zambonin PG (2000) Sens Actuators B 67:312–316

    Article  Google Scholar 

  15. Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz HE, Lovinger AJ, Bao Z (2001) Appl Phys Lett 78(15):2229

    Article  CAS  Google Scholar 

  16. Crone BK, Dodabalapur A, Sarpeshkar R, Gelperin A, Katz HE, Bao Z (2002) J Appl Phys 91(12):10140

    Article  CAS  Google Scholar 

  17. Deepak Sharma and Ananth Dodabalapur, unpublished result

  18. Shirakawa H, Louis E, MacDiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Commun 16:578

    Article  Google Scholar 

  19. Mitzi DB, Chondroudis K, Kagan CR (2001) IBM J Res and Dev 45(1):29–45

    Article  CAS  Google Scholar 

  20. Dimitrakopoulos CD, Mascaro DJ (2001) J Res and Dev 45(1):11

    CAS  Google Scholar 

  21. Sheats James R (2004) J Mater Res 19(7):1974–1989

    Article  CAS  Google Scholar 

  22. Kelley TW, Baude PF, Gerlach C, Ender DE, Muyres D, Haase MA, Vogel DE, Theiss SD (2004) Chem Mater 16:4413–4422

    Article  CAS  Google Scholar 

  23. Koezuka H, Tsumura A, Ando T (1987) Synth Met 18:699

    Article  CAS  Google Scholar 

  24. Bredas JL, Calbert JP, da Silva Filho DA, Cornil J (2002)PNAS 99(9):5804–5809

    Article  CAS  Google Scholar 

  25. Kiguchi M, Nakayama M, Shimada T, Saiki K (2005) Phys Rev B 71(3) Art. No. 035332

  26. Dodabalapur A, Torsi L, Katz HE (1995) Science, 268(5208):270–271

    Article  CAS  Google Scholar 

  27. Dimitrakopoulos CD, Malenfant, PRL (2002) Adv Mater 14:99

    Article  CAS  Google Scholar 

  28. Sun YM, Liu YQ, Zhu DB (2005) J Mater Chem, 15(1):53–65

    Article  CAS  Google Scholar 

  29. Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W, Weber W (2002) J Appl Phys 92(9):5259

    Article  CAS  Google Scholar 

  30. Gundlach DJ, Kuo C-C, Nelson SF, Jackson (1999) TN 57th Annual Device Research Conference, 164–165

  31. Bao Z, Dodabalapur A, Lovinger AJ (1996) J Appl Phys Lett 69(26):4108

    Article  CAS  Google Scholar 

  32. Sirringhaus H, Tessler N, Friend RH (1998) Science 280:1741

    Article  PubMed  CAS  Google Scholar 

  33. Krumm J, Eckert E, Glauert WH, Andreas Ullmann, Walter Fix, and Wolfgang Clemens, IEEE Electron Device Letters 25(6):399

  34. Wingbrant H, Lundstrom I, Lloyd Spetz A (2003) Sens Actuators B 93:286–294

    Article  CAS  Google Scholar 

  35. Briand D, Wingbrant H, Sundgren H, van der Schoot B, Ekedahl L-G, Lundstrom I, de Rooij NF (2003) Sens Actuators B 93:276–285

    Article  CAS  Google Scholar 

  36. Tuller HL, Mlcak R (1998) Curr. Opin. Solid State Mat Sci 3:501

    Article  CAS  Google Scholar 

  37. Paulsson NJP, Winquist F (1999) Forensic Sci Int 105:95

    Article  PubMed  CAS  Google Scholar 

  38. Janata J, Josowicz M (2003) Nature Materials 2:19

    Article  PubMed  CAS  Google Scholar 

  39. Torsi L, Cioffi N, Di Franco C, Sabbatini L, Zambonin PG, Bleve-Zacheo T (2001) Solid-State Electronics, 45:1479

    Article  CAS  Google Scholar 

  40. Torsi L, Tanese MC, Cioffi N, Gallazzi MC, Sabbatini L, Zambonin PG (2004) Sens Actuators B, 98:204

    Article  CAS  Google Scholar 

  41. Torsi L, Taifuri A, Cioffi N, Gallazzi MC, Sassella A, Sabbatini L, Zambonin PG (2003) Sens Actuators B, 93:257

    Article  CAS  Google Scholar 

  42. Torsi L, Tanese MC, Cioffi N, Gallazzi MC, Sabbatini L, Zambonin PG, Raos G, Meille SV, Giangregorio MM (2003) J. Phys. Chem. B, 107:7589

    Article  CAS  Google Scholar 

  43. Torsi L, Lovinger AJ, Crone B, Someya T, Dodabalapur A, Katz HE, Gelperin A (2002) J Phys Chem B 106:12563

    Article  CAS  Google Scholar 

  44. Someya T, Katz HE, Gelperin A, Lovinger AJ, Dodabalapur A (2002) Appl Phys Lett 81(16):3079

    Article  CAS  Google Scholar 

  45. Madou MJ, Cubicciotti R (2003) Proc IEEE 91(6):830

    Article  CAS  Google Scholar 

  46. Collet J, Tharaud O, Chapoton, A, Vuillaume D (2000) Appl Phys Lett 76(14):1941

    Article  CAS  Google Scholar 

  47. Pannemann Ch, Diekmann T, Hilleringmann U (2003) Microelectron Eng 67–68:845–852

    Article  CAS  Google Scholar 

  48. Zhang Y, Patta JR, Ambily S, Shen Y, Ralph DC, Malliaras GG (2003) Adv Mater 15(19):1632

    Article  CAS  Google Scholar 

  49. Liang W, Daniel F, Taeho J, Debarshi B, von Seggern H, Dodabalapur A (2004) Appl Phys Lett 85(10):1772

    Article  CAS  Google Scholar 

  50. Knipp D, Street RA, VÖlkel AR (2003) Appl Phys Lett 82(22):3907

    Article  CAS  Google Scholar 

  51. Zhu Z, Mason JT, Dieckmann R, Malliaras, GG (2002) Appl Phys Lett 81 (24):4643

    Article  CAS  Google Scholar 

  52. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, De Leeuw DM (1999) Nature 401(6754):685–688

    Article  CAS  Google Scholar 

  53. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) Science, 290(5499):2123–2126

    Article  PubMed  CAS  Google Scholar 

  54. Ong BS, Wu Y, Liu P, Gardner S (2004) J Am Chem Soc 126(11):3378

    Article  PubMed  CAS  Google Scholar 

  55. Khondaker SI, Yao Z (2002) Appl Phys Lett 81(24):4613

    Article  CAS  Google Scholar 

  56. Wang L, Jung T, Fine D, Khondaker SI, Yao Z, von Seggern H, Dodabalapur A (2003) Proc 3rd IEEE Conf Nanotechnology, (2):577–580

    Google Scholar 

  57. Matters M, de Leeuw DM, Herwig PT, Brown AR (1999) Synth Met, 102:998

    Article  CAS  Google Scholar 

  58. Gomes HL, Stallinga P, Dinelli F, Murgia M, Biscarini F, de Leeuw DM, Muck T, Geurts J, Molenkamp LW, Wagner V (2004) Appl Phys Lett 84(16):3184

    Article  CAS  Google Scholar 

  59. Horowitz G, Hajlaoui R, Delannoy P (1995) J Phys III, 5:355–371

    Article  CAS  Google Scholar 

  60. Street RA, Northrup JE, Salleo A (2005) Phys Rev B 71:165202

    Article  CAS  Google Scholar 

  61. Pinalli R, Suman M, Dalcanale E (2004) Eur J Org Chem 3:451–462

    Article  CAS  Google Scholar 

  62. Srivastava DN, Shyam P (2004) Proc Int Conf Electroanalytical Chemistry and Allied Topics, Dona Paula, Goa, January, pp. 422

  63. Aouni F, Rouis A, Ben Ouada H, Mlika R, Dridi C, Lamartine R (2004) Mater Sci Eng C 24(4):491–495

    Article  CAS  Google Scholar 

  64. Gates BD, Xu Q, Christopher LJ, Wolfe DB, Whitesides GM (2004) Annu Rev Mater Res (34):339–372

    Article  CAS  Google Scholar 

  65. Hua F, Sun Y, Gaur A, Meitl MA, Bilhaut L, Rotkina L, Wang J, Geil P, Shim M, Rogers JA, Shim A (2004) Nano Lett 4(12):2467

    Article  CAS  Google Scholar 

  66. Zaumseil J, Someya T, Bao ZN, Loo YL, Cirelli R, Rogers JA (2003) Appl Phys Lett 82(5):793–795

    Article  CAS  Google Scholar 

  67. Torres CMS, Zankovych S, Seekamp J, Kam AP, Cedeno CC, Hoffmann T, Ahopelto J, Reuther F, Pfeiffer K, Bleidiessel G, Gruetzner G, Maximov MV, Heidari B (2003) Mater Sci Eng C 23(1–2):23–31

    Article  Google Scholar 

  68. Resnick Doug, Sreenivasan SV, Grant Willson C (2005) Mater Today 8(2):34

    Article  CAS  Google Scholar 

  69. Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P (2001) PNAS 98(9):4835–4840

    Article  PubMed  CAS  Google Scholar 

  70. de Gans BJ, Duineveld PC, Schubert, US (2004) Advanced Materials, 16(3):203–213

    Article  CAS  Google Scholar 

  71. de Gans BJ, Schubert US (2004) Langmuir 20(18):7789–7793

    Article  PubMed  CAS  Google Scholar 

  72. Sirringhaus H, Shimoda T (2003) MRS Bulletin 28(11):802–803

    Google Scholar 

  73. Paul KE, Wong WS, Ready SE, Street RA (2003) Appl Phys Lett 83(10):2070

    Article  CAS  Google Scholar 

  74. Zhao SQ, Sin JKO, Xu BK, Zhao MY, Peng ZY, Cai H (2000) Sens Actuators B 64 (1–3):83–87

    Article  Google Scholar 

  75. Alivisatos P (2004) Nature Biotechnol 22(1):47

    Article  PubMed  CAS  Google Scholar 

  76. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Science 287:1801

    Article  PubMed  CAS  Google Scholar 

  77. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science, 287:622

    Article  PubMed  CAS  Google Scholar 

  78. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Science, 293:1289

    Article  PubMed  CAS  Google Scholar 

  79. Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q, Koehne J, Han J, Meyyappan M (2003) Nano Lett 3(5):597

    Article  CAS  Google Scholar 

  80. Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) PNAS 101(39)14017–14022

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Zhenan Bao (Stanford University, formerly Lucent) for providing some of the polythiophene and Professor Heinz von Seggern (Technical University of Darmstadt), Mr Taeho Jung, Mr Suvid Nadkarni, and Mr Debarshi Basu for helpful discussions. The authors would also like to thank NSF NIRT, DARPA, AFOSR, and Sematech AMRC for their financial support. Finally, we would like to thank the CNM and the TMI at the University of Texas at Austin for use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananth Dodabalapur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Fine, D., Sharma, D. et al. Nanoscale organic and polymeric field-effect transistors as chemical sensors. Anal Bioanal Chem 384, 310–321 (2006). https://doi.org/10.1007/s00216-005-0150-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0150-2

Keywords

Navigation