Skip to main content
Log in

Low-temperature investigation of the growth mechanism of alkylsiloxane self-assembled monolayers

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The growth behavior of self-assembled monolayer films strongly depends on parameters such as solvent, water concentration in the solvent, substrate type, and deposition method. A further parameter, the temperature, is of particular importance. It has been found that growth kinetics, size, and shape of the structures obtained strongly depend on the deposition temperature. Thus, exact adjustment and control of the solution temperature is of crucial importance for investigation of deposition mechanisms. The development of a temperature control unit has been the basis for a series of experiments on deposition of octadecyltrichlorosilane (OTS) on silicon wafers to study the influence of temperature on growth kinetics and film structure. Characterization of the films was performed with ellipsometry and atomic-force microscopy. It has been found that octadecylsiloxane (ODS) island sizes decrease with increasing temperature. Furthermore, a characteristic temperature exists above which increasingly disordered deposition occurs. At low temperatures (5–10 °C) smaller dot-like features are observed besides larger fractally shaped islands characteristic for self-assembly growth of ODS films. Our results indicate that these small dot-like features originate from ordered aggregates in the adsorption solution and that they are the precursors of the formation of larger islands. However, they can only be observed at low temperatures, because at room temperature they coalesce quickly to form larger units, due to the high surface mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maoz R, Sagiv J (1984) J Colloid Interface Sci 100:465

    CAS  Google Scholar 

  2. Ulman A (1996) Chem Rev 96:1533

    CAS  PubMed  Google Scholar 

  3. Schreiber F (2000) Progr Surf Sci 65:151

    Article  CAS  Google Scholar 

  4. Schwartz DK, Steinberg S, Israelachvili J, Zasadzinski JAN (1992) Phys Rev Lett 69:3354

    Article  CAS  PubMed  Google Scholar 

  5. Angst DL, Simmons GW (1991) Langmuir 7:2236

    CAS  Google Scholar 

  6. Allara DL, Parikh AN, Rondelez F (1995) Langmuir 11:2357

    CAS  Google Scholar 

  7. Le Grange JD, Markham JL, Kurkjian CR (1993) Langmuir 9:1749

    Google Scholar 

  8. Bierbaum K, Grunze M, Baski AA, Chi LF, Schrepp W, Fuchs H (1995) Langmuir 11:2143

    CAS  Google Scholar 

  9. Foisner J, Glaser A, Kattner J, Hoffmann H, Friedbacher G (2003) Langmuir 19:3741

    Article  CAS  Google Scholar 

  10. Terrill RH, Tanzer TA, Bohn PW (1998) Langmuir 14:845

    Article  CAS  Google Scholar 

  11. Rozlosnik N, Gerstenberg MC, Larsen NB (2003) Langmuir 19:1182

    Article  Google Scholar 

  12. Iimura K-I, Nakajima Y, Kato T (2000) Thin Solid Films 379:230

    Article  CAS  Google Scholar 

  13. Brunner H, Vallant T, Mayer U, Hoffmann H, Basnar B, Vallant M, Friedbacher G (1999) Langmuir 15:1899

    Article  CAS  Google Scholar 

  14. Leitner T, Friedbacher G, Vallant T, Brunner H, Mayer U, Hoffmann H (2000) Mikrochim Acta 133:331

    Article  CAS  Google Scholar 

  15. Vallant T, Brunner H, Mayer U, Hoffmann H, Leitner T, Resch R, Friedbacher G (1998) J Phys Chem B 102:7190

    Article  CAS  Google Scholar 

  16. Parikh AN, Allara DL, Azuz IB, Rondelez F (1994) J Phys Chem 98:7577

    CAS  Google Scholar 

  17. Rye RR (1997) Langmuir 13:2588

    Article  CAS  Google Scholar 

  18. Carraro C, Yauw OW, Sung MM, Maboudian R (1998) J Phys Chem B 102:4441

    Article  CAS  Google Scholar 

  19. McCrackin F, Passaglia E, Stromberg R, Steinberg H (1963) J Res Natl Bur Stand A 67:363

    Google Scholar 

  20. Bunker BC, Carpick RW, Assink RA, Thomas ML, Hankins MG, Voigt JA, Sipola D, de Boer MP, Gulley GL (2000) Langmuir 16:7742

    Article  CAS  Google Scholar 

  21. Glaser A, Foisner J, Hoffmann H, Friedbacher G (2004) Langmuir, in press

Download references

Acknowledgement

Financial support of this work by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF project number P14763) is gratefully acknowledged. Special thanks to Dieter Holzinger and Guido Kickelbick, Institute of Materials Chemistry, Vienna University of Technology, for providing the opportunity to carry out light scattering experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Friedbacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaser, A., Foisner, J., Friedbacher, G. et al. Low-temperature investigation of the growth mechanism of alkylsiloxane self-assembled monolayers. Anal Bioanal Chem 379, 653–657 (2004). https://doi.org/10.1007/s00216-004-2620-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2620-3

Keywords

Navigation