Skip to main content
Log in

Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Whole-cell-based sensing systems that respond to cadmium and lead ions have been designed and developed using genetically engineered bacteria. These systems take advantage of the ability of certain bacteria to survive in environments polluted with cadmium and lead ions. The bacteria used in this investigation have been genetically engineered to produce reporter proteins in response to the toxic ions. This was achieved by modifying a strain of Escherichia coli to harbor plasmids pYSC1 and pYS2/pYSG1. In these dual-plasmid-based sensing systems, the expression of the reporters β-galactosidase and red-shifted green fluorescent protein (rs-GFP) was controlled by CadC, the regulatory protein of the cad operon. Regulation of the expression of the reporter proteins is related to the amount of cadmium and lead ions employed to induce the bacteria. The bacterial sensing systems were found to respond to cadmium, lead, and zinc ions, and had no significant response to nickel, copper, manganese, and cobalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Beveridge TJ, Hughes MN, Lee H, Leung KT, Poole RK, Savvaidis I, Silver S, Trevors JT (1997) Adv Microb Physiol 38:177–243

    CAS  PubMed  Google Scholar 

  2. Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csoregi E, Johansson G, Mattiasson B (1999) Anal Chim Acta 387:235–244

    CAS  Google Scholar 

  3. Shetty RS, Salins LLE, Ramanathan S, Daunert S (1999) presented at Proc SPIE

  4. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Chem Rev 100:2705–2738

    Article  CAS  PubMed  Google Scholar 

  5. Kohler S, Belkin S, Schmid RD (2000) Fresenius J Anal Chem 366:769–779

    Article  CAS  PubMed  Google Scholar 

  6. Ramanathan S, Ensor M, Daunert S (1997) Trends Biotechnol 15: 500–506

    CAS  PubMed  Google Scholar 

  7. Virta M, Lampinen J, Karp M (1995) Anal Chem 67:667–669

    CAS  Google Scholar 

  8. Tauriainen S, Karp M, Chang W, Virta M (1997) Appl Environ Microbiol 63:4456–4461

    CAS  PubMed  Google Scholar 

  9. Tauriainen S, Karp M, Chang W, Virta M (1998) Biosens Bioelectron 13:931–938

    Article  CAS  PubMed  Google Scholar 

  10. Peitzsch N, Eberz G, Nies DH (1998) Appl Environ Microbiol 64:453–458

    CAS  PubMed  Google Scholar 

  11. Guan X, Ramanathan S, Garris JP, Shetty RS, Ensor CM, Bachas LG, Daunert S (2000) Anal Chem 72:2423–2427

    CAS  PubMed  Google Scholar 

  12. Ramanathan S, Shi W, Rosen BP, Daunert S (1997) Anal Chem 69:3380–3384

    CAS  PubMed  Google Scholar 

  13. Ramanathan S, Shi W, Rosen BP, Daunert S (1998) Anal Chim Acta 369:189–195

    CAS  Google Scholar 

  14. Scott DL, Ramanathan S, Shi W, Rosen BP, Daunert S (1997) Anal Chem 69:16–20

    CAS  PubMed  Google Scholar 

  15. Shetty RS, Ramanathan S, Badr IH, Wolford JL, Daunert S (1999) Anal Chem 71:763–768

    CAS  PubMed  Google Scholar 

  16. Applegate BM, Kehrmeyer SR, Sayler GS (1998) Appl Environ Microbiol 64:2730–2735

    CAS  PubMed  Google Scholar 

  17. Kobatake E, Niimi T, Haruyama T, Ikariyama Y, Aizawa M (1995) Biosens Bioelectron 10:601–605

    Article  CAS  PubMed  Google Scholar 

  18. Layton AC, Muccini M, Ghosh MM, Sayler GS (1998) Appl Environ Microbiol 64:5023–5026

    CAS  PubMed  Google Scholar 

  19. Rosen BP, Bhattacharjee H, Zhou T, Walmsley AR (1999) Biochim Biophys Acta 1461:207–215

    Article  CAS  PubMed  Google Scholar 

  20. Rensing C, Ghosh M, Rosen BP (1999) J Bacteriol 181:5891–5897

    CAS  PubMed  Google Scholar 

  21. Gatti D, Mitra B, Rosen BP (2000) J Biol Chem 275:34009–34012

    Article  CAS  PubMed  Google Scholar 

  22. Pena MM, Koch KA, Thiele DJ (1998) Mol Cell Biol 18:2514–2523

    CAS  Google Scholar 

  23. Lebrun M, Audurier A, Cossart P (1994) J Bacteriol 176:3040–3048

    CAS  PubMed  Google Scholar 

  24. Rensing C, Mitra B, Rosen BP (1997) Proc Natl Acad Sci USA 94:14326–14331

    Article  CAS  PubMed  Google Scholar 

  25. Rensing C, Sun Y, Mitra B, Rosen BP (1998) J Biol Chem 273:32614–32617

    CAS  PubMed  Google Scholar 

  26. Diels L, Dong Q, van der Lelie D, Baeyens W, Mergeay M (1995) J Ind Microbiol 14:142–153

    Google Scholar 

  27. Xu C, Rosen BP (1999) Proc 2nd Int Symp Met Genet, pp 5–19

  28. Silhavy TJ, Beckwith JR (1985) Microbiol Rev 49:398–418

    CAS  PubMed  Google Scholar 

  29. Valdivia RH, Falkow S (1997) Trends Microbiol 5:360–363

    Article  CAS  PubMed  Google Scholar 

  30. Chalfie M, Kain S (1998) Green fluorescent protein: properties applications and protocols. Wiley–Liss, New York, pp 121–268, 288

    Google Scholar 

  31. Kendall JM, Badminton MN (1998) Trends Biotechnol 16:216–224

    Google Scholar 

  32. Welsh S, Kay SA (1997) Curr Opin Biotechnol 8:617–622

    CAS  PubMed  Google Scholar 

  33. Nucifora G, Chu L, Misra TK, Silver S (1989) Proc Natl Acad Sci USA 86:3544–3548

    CAS  PubMed  Google Scholar 

  34. Endo G, Silver S (1995) J Bacteriol 177:4437–4441

    CAS  PubMed  Google Scholar 

  35. Yoon KP, Misra TK, Silver S (1991) J Bacteriol 173:7643–7649

    CAS  PubMed  Google Scholar 

  36. Yoon KP, Silver S (1991) J Bacteriol 173:7636–7642

    CAS  PubMed  Google Scholar 

  37. Sun Y, Wong MD, Rosen BP (2001) J Biol Chem 276:14955–14960

    CAS  PubMed  Google Scholar 

  38. Sambrook J, Fritsch DF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation (Grant CHE-9502299) and the National Institutes of Environmental Health (NIEHS with funding provided by the Environmental Protection Agency (1P42ES07380) to SD and United States Public Health Service Grant (AI45428) to BPR. SD is a Lilly Faculty Awardee and a Cottrell Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Daunert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shetty, R.S., Deo, S.K., Shah, P. et al. Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Anal Bioanal Chem 376, 11–17 (2003). https://doi.org/10.1007/s00216-003-1862-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1862-9

Keywords

Navigation