Skip to main content
Log in

Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel and sensitive electrochemical DNA biosensor based on multi-walled carbon nanotubes functionalized with a carboxylic acid group (MWNTs–COOH) for covalent DNA immobilization and enhanced hybridization detection is described. The MWNTs–COOH-modified glassy carbon electrode (GCE) was fabricated and oligonucleotides with the 5'-amino group were covalently bonded to the carboxyl group of carbon nanotubes. The hybridization reaction on the electrode was monitored by differential pulse voltammetry (DPV) analysis using an electroactive intercalator daunomycin as an indicator. Compared with previous DNA sensors with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotube-based assay with its large surface area and good charge-transport characteristics dramatically increased DNA attachment quantity and complementary DNA detection sensitivity. This is the first application of carbon nanotubes to the fabrication of an electrochemical DNA biosensor with a favorable performance for the rapid detection of specific hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A,B.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Jacobs K, Wolf SF, Haines L, Fisch J, Kremsky J N, Dougherty JP (1987) Nucleic Acid Res 15:2911

    PubMed  Google Scholar 

  2. Symons RH, Habili N, McInnes JL (1989) J Virol Methods 23:299

    PubMed  Google Scholar 

  3. Gentilomi G, Ferri E, Girotti S (1991) Anal Chim Acta 255:387

    Article  Google Scholar 

  4. Kan W, Chehab FF (1989) Proc Natl Acad Sci USA 86:9178

    PubMed  Google Scholar 

  5. Abel AP, Weller MG, Duveneck GL, Ehrat M, Widmer HM (1996) Anal Chem 68:2905

    Article  CAS  PubMed  Google Scholar 

  6. Ehrlich HA, Saiki RK, Walsh PS, Levenson CH (1989) Proc Natl Acad Sci USA 86:6230

    PubMed  Google Scholar 

  7. Wang J (2000) Nucleic Acid Res 28:3011

    Article  CAS  PubMed  Google Scholar 

  8. Palecek E, Fojta M (2001) Anal Chem 73:74A

    CAS  PubMed  Google Scholar 

  9. Millan KM, Saraullo A, Mikkalsen SR (1994) Anal Chem 66:2943

    CAS  PubMed  Google Scholar 

  10. Hashimoto K, Ito K, Ishimori Y (1994) Anal Chem 66:3830

    CAS  PubMed  Google Scholar 

  11. Mikkelson SR (1996) Electroanalysis 8:15

    Google Scholar 

  12. Ihara T, Nakayama M, Murata M, Nakano K, Maeda M (1997) Chem Commun 1609

  13. Wang J, Rivas G, Fernandes JR, Paz J, Jiang M, Waymire R (1998) Anal Chim Acta 375:197

    Article  CAS  Google Scholar 

  14. Xu C, Cai H, He PG, Fang YZ (2001) Analyst 126:62

    Article  CAS  PubMed  Google Scholar 

  15. Xu C, He PG, Fang YZ (2000) Anal Chim Acta 411:31

    Article  CAS  Google Scholar 

  16. Sun XY, He PG, Liu SH, Ye JN, Fang YZ (1998) Talanta 47:487

    Article  CAS  Google Scholar 

  17. Xu C, Cai H, He PG, Fang YZ (2000) Fresenius J Anal Chem 369:428

    Article  Google Scholar 

  18. Pividori MI, Merkoci A, Alegret S (2000) Biosens Bioelectron 15:291

    Article  CAS  PubMed  Google Scholar 

  19. S Cosnier (1999) Biosens Bioelectron 14:443

    Article  PubMed  Google Scholar 

  20. Wang J, Jiang M, Fortes A, Mukherjee B (1999) Anal Chim Acta 402:7

    Article  CAS  Google Scholar 

  21. Saoudi B, Despas C, Chehimi M, Jammul N, Delamar M, Bessie're J, Wacarius A (2000) Sens Actuators B 62:35–42

    Article  Google Scholar 

  22. Cai H, Xu C, He PG, Fang YZ (2001) J Electroanal Chem 510:78

    Article  CAS  Google Scholar 

  23. Thomas W, Ebbesen (1996) Phys Today 49:26

    Google Scholar 

  24. Chen RJ, Zhang WJ, Wang DW, Dai HJ (2001) J Am Chem Soc 123:3838–3839

    CAS  PubMed  Google Scholar 

  25. Tsang SC, Davis JJ, Green MLH, Hill HAO, Leung YC, Sadler PJ (1995) J Chem Soc Chem Commun 2579

  26. Balavoine F, Schultz P, Richard C, Mallouh V, Ebbeson TW, Mioskowski C (1999) Angew Chem Int Ed 38:1912

    CAS  Google Scholar 

  27. Tsang SS, Guo Z, Chen YK, Green MLH, Hill HAO, Hambley TW, Sadler PJ (1997) Angew Chem 109:2291

    Google Scholar 

  28. Guo Z, Sadler PJ, Tsang SC (1998) Adv Mater 10:701

    Article  CAS  Google Scholar 

  29. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Science 282:95

    Article  CAS  PubMed  Google Scholar 

  30. S Lijima (1991) Nature 354:56

    Google Scholar 

  31. Wildöer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Nature 391:59

    Article  Google Scholar 

  32. Odom TW, Huang JL, Kim P, Lieber CM (1998) Nature 391:62

    Article  CAS  Google Scholar 

  33. Britto PJ, Santhanam KSV, Ajayan PM (1996) Bioelectrochem Bioenerg 41:121

    CAS  Google Scholar 

  34. Davis JJ, Coles RJ, Hill HAO (1997) J Electroanal Chem 440:279

    CAS  Google Scholar 

  35. Britto PJ, Santhanam KSV, Rubio A, Alonso JA, Ajayan PM (1999) Adv Mater 11:154

    Article  CAS  Google Scholar 

  36. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimow K, Huffman CB, Rodriguez–Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Science 280:1253

    Article  CAS  PubMed  Google Scholar 

  37. HG Khorana (1953) Chem Rev 53:145

    Google Scholar 

  38. Staros JV, Wright RW, Swingle DM (1986) Anal Biochem 156:220

    CAS  PubMed  Google Scholar 

  39. Luo HX, Shi ZJ, Li NQ, Gu ZN, Zhuang QK (2001) Anal Chem 73:915

    Article  CAS  PubMed  Google Scholar 

  40. Cai XH, Rivas G, Farias PAM, Shiraishi H, Wang J, Palecek E (1996) Electroanalysis (NY) 8:753

  41. Marrazza G, Chianella I, Mascini M (1999) Anal Chim Acta 387:297

    CAS  Google Scholar 

  42. Marrazza G, Chiane I, Mascini M (1999) Biosens Bioelectron 14:43

    Article  CAS  PubMed  Google Scholar 

  43. Wang JX, Li MX, Shi ZJ, Li NQ, ZN Gu (2001) Electrochim Acta 47:651

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (NSFC) for financial support (No. 29875008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhi Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, H., Cao, X., Jiang, Y. et al. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection . Anal Bioanal Chem 375, 287–293 (2003). https://doi.org/10.1007/s00216-002-1652-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-002-1652-9

Keywords

Navigation