Skip to main content
Log in

Negative rectification and negative differential resistance in nanoscale single-walled carbon nanotube p-n junctions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We investigate the transport properties of few-nm-long single-walled carbon nanotube (SWCNT) p-n junctions for the first time by using ab initio quantum transport calculations. Unlike the previously reported few-μm-long SWCNT p-n junctions, which rectify positively, all the investigated ultrashort SWCNT p-n junctions show negative rectification effect, accompanied by negative differential resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ellenbogen JC, Love JC (2000) Proc IEEE 88:386

    Article  CAS  Google Scholar 

  2. Cao Y, Steigerwald ML, Nuckolls C, Guo XF (2010) Adv Mater 22:20

    Article  Google Scholar 

  3. Yan QM, Huang B, Yu J, Zheng FW, Zang J, Wu J, Gu BL, Liu F, Duan WH (2007) Nano Lett 7:1469

    Article  CAS  Google Scholar 

  4. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  5. Iijima S, Ichihashi T (1993) Nature 363:603

    Article  CAS  Google Scholar 

  6. Park H, Zhao J, Lu JP (2006) Nano Lett 6:916

    Article  CAS  Google Scholar 

  7. Tsuneta T, Lechner L, Hakonen PJ (2007) Phys Rev Lett 98:087002

    Article  CAS  Google Scholar 

  8. Wei D, Liu Y (2008) Adv Mater 20:2815

    Article  CAS  Google Scholar 

  9. Zhou W, Bai X, Wang E, Xie S (2009) Adv Mater 21:4565

    Article  CAS  Google Scholar 

  10. Lee SU, Belosludov RV, Mizuseki H, Kawazoe Y (2009) Small 5:1769

    Article  CAS  Google Scholar 

  11. Kienle D, Léonard F (2009) Phys Rev Lett 103:026601

    Article  Google Scholar 

  12. Kanungo M, Lu H, Malliaras GG, Blanchet GB (2009) Science 323:234

    Article  CAS  Google Scholar 

  13. Oshima Y, Takenobu T, Yanagi K, Miyata Y, Kataura H, Hata K, Iwasa Y, Nojiri H (2010) Phys Rev Lett 104:016803

    Article  Google Scholar 

  14. Wang ZH, Wei J, Morse P, Dash JG, Vilches OE, Cobden DH (2010) Science 327:552

    Article  CAS  Google Scholar 

  15. Kim S, Janes DB, Mohammadi S, Back J, Shim M (2010) Nanotechnology 21:385203

    Article  Google Scholar 

  16. Chang LL, Esaki L, Tsu R (1974) Appl Phys Lett 24:593

    Article  CAS  Google Scholar 

  17. Shockley W (1976) IEEE Trans Electron Devices 23:597

    Article  Google Scholar 

  18. Esaki L (1976) IEEE Trans Electron Devices 23:644

    Article  Google Scholar 

  19. Esfarjani K, Farajian AA, Hashi Y, Kawazoe Y (1999) Appl Phys Lett 74:79

    Article  CAS  Google Scholar 

  20. Zhou C, Kong J, Yenilmez E, Dai H (2000) Science 290:1552

    Article  CAS  Google Scholar 

  21. Lee JU, Gipp PP, Heller CM (2004) Appl Phys Lett 85:145

    Article  CAS  Google Scholar 

  22. Li J, Zhang Q, Chan-Park MB (2006) Carbon 44:3087

    Article  CAS  Google Scholar 

  23. Li YF, Hatakeyama R, Shishido J, Kato T, Kaneko T (2007) Appl Phys Lett 90:173127

    Article  Google Scholar 

  24. Abdula D, Shim M (2008) ACS Nano 2:2154

    Article  CAS  Google Scholar 

  25. Li H, Zhang Q, Marzari N (2008) Nano Lett 8:64

    Article  Google Scholar 

  26. Kato T, Hatakeyama R, Shishido J, Oohara W, Tohji K (2009) Appl Phys Lett 95:083109

    Article  Google Scholar 

  27. Aviram A, Ratner MA (1974) Chem Phys Lett 29:277

    Article  CAS  Google Scholar 

  28. Metzger RM (1995) Mater Sci Eng C 3:277

    Article  Google Scholar 

  29. Metzger RM (2001) Synth Met 124:107

    Article  CAS  Google Scholar 

  30. Krzeminski C, Delerue C, Allan G, Vuillaume D, Metzger RM (2001) Phys Rev B 64:085405

    Article  Google Scholar 

  31. Stokbro K, Taylor J, Brandbyge M (2003) J Am Chem Soc 125:3674

    Article  CAS  Google Scholar 

  32. Stadler R, Geskin V, Cornil J (2008) J Phys Condens Matter 20:374105

    Article  CAS  Google Scholar 

  33. Ford MJ, Hoft RC, McDonagh AM, Cortie MB (2008) J Phys Condens Matter 20:374106

    Article  CAS  Google Scholar 

  34. He HY, Pandey R, Mallick G, Karna SP (2009) J Phys Chem C 113:1575

    Article  CAS  Google Scholar 

  35. Ng MF, Shen L, Zhou LP, Yang SW, Tan VBC (2008) Nano Lett 8:3662

    Article  CAS  Google Scholar 

  36. Wang ZY, Li H, Liu Z, Shi ZJ, Lu J, Suenaga K, Joung SK, Okazaki T, Gu ZN, Zhou J, Gao ZX, Li GP, Sanvito S, Wang EG, Iijima S (2010) J Am Chem Soc 132:13840

    Article  CAS  Google Scholar 

  37. Taylor J, Guo H, Wang J (2001) Phys Rev B 63:121104

    Article  Google Scholar 

  38. Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Phys Rev B 65:165401

    Article  Google Scholar 

  39. Stokbro K, Taylor J, Brandbyge M, Ordejón P (2003) Ann NY Acad Sci 1006:212

    Article  CAS  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  41. Troullier N, Martins JL (1991) Phys Rev B 43:8861

    Article  Google Scholar 

  42. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  43. Buttiker M, Imry Y, Landauer R, Pinhas S (1985) Phys Rev B 31:6207

    Article  Google Scholar 

  44. Bai P, Li E, Lam KT, Kurniawan O, Koh WS (2008) Nanotechnology 19:115203

    Article  CAS  Google Scholar 

  45. Javey A, Qi PF, Wang Q, Dai HJ (2004) Proc Natl Acad Sci USA 101:13408

    Article  CAS  Google Scholar 

  46. Franklin AD, Chen ZH (2010) Nat Nanotechnol 5:858

    Article  CAS  Google Scholar 

  47. Khoong Hong K, Neaton JB, Young Woo S, Cohen ML, Louie SG (2008) Nano Lett 8:2900

    Article  Google Scholar 

  48. Xu Y, Zhang G, Li BW (2008) J Phys Chem B 112:16891

    Article  CAS  Google Scholar 

  49. Kim WY, Kwon SK, Kim KS (2007) Phys Rev B 76:4

    Google Scholar 

  50. Hao R, Li Q, Luo Y, Yang J (2009) Appl Phys Lett 94:173110

    Article  Google Scholar 

  51. Williams JR, DiCarlo L, Marcus CM (2007) Science 317:638

    Article  CAS  Google Scholar 

  52. Chiu HY, Perebeinos V, Lin YM, Avouris P (2010) Nano Lett 10:4634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (Grants Nos. 10774003, 90626223, and 20731162012), National 973 Projects (Grant No. 2007CB936200, MOST of China), Fundamental Research Funds for the Central Universities, Program for New Century Excellent Talents in University of MOE, National Foundation for Fostering Talents of Basic Science (Grant No. J0630311) of China. We thank Prof. Toshiaki Kato for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Lu.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Yan, X., Li, H. et al. Negative rectification and negative differential resistance in nanoscale single-walled carbon nanotube p-n junctions. Theor Chem Acc 130, 353–359 (2011). https://doi.org/10.1007/s00214-011-0990-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0990-0

Keywords

Navigation