Skip to main content

Advertisement

Log in

Adsorption of catechol on a wet silica surface: density functional theory study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Marine mussel proteins adhere permanently to diverse wet surfaces via their catechol (1, 2-dihydroxybenzene) functionality. To elucidate the molecular mechanism underlying this water-resistant adhesion, we performed density functional theory calculations for the competitive adsorption of catechol and water on a wet silica surface. Results show the energetic spontaneity of the reaction; catechol displaces water molecules and adheres directly to the surface. This result was subsequently corroborated by our molecular dynamics simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ninan L, Monahan J, Stroshine RL, Wilker JJ, Shi R (2003) Biomaterials 24:4091–4099

    Article  CAS  Google Scholar 

  2. Waite JH (1987) Int JAdhes Adhes 7:9–14

    Article  CAS  Google Scholar 

  3. Lee H, Lee BP, Messersmith PB (2007) Nature 448:338–341

    Article  CAS  Google Scholar 

  4. Zhao H, Robertson NB, Jewhurst SA, Waite JH (2006) J Biol Chem 281:11090–11096

    Article  CAS  Google Scholar 

  5. Guvendiren M, Brass DA, Messersmith PB, Shull KR (2009) J Adhes 85:631–645

    Article  CAS  Google Scholar 

  6. Wang J, Tahir MN, Kappl M, Tremel W, Metz N, Barz M, Theato P, Butt HJR (2008) Adv Mater 20:3872–3876

    Article  CAS  Google Scholar 

  7. Weinhold M, Soubatch S, Temirov R, Rohlfing M, Jastorff B, Tautz FS, Doose C (2006) J Phys Chem B 110:23756–23769

    Article  CAS  Google Scholar 

  8. Yu M, Hwang J, Deming TJ (1999) J Am Chem Soc 121:5825–5826

    Article  CAS  Google Scholar 

  9. Silverman HG, Roberto FF (2007) Mar Biotechnol 9:66–681

    Article  Google Scholar 

  10. AA OOKA, Garrell RL (2000) Biopolymers 57:92–102

    Article  Google Scholar 

  11. Monahan J, Wilker JJ (2004) Langmuir 20:3724–3729

    Article  CAS  Google Scholar 

  12. Mian SA, Saha LC, Jang J, Wang L, Gao X, Nagase S (2010) J Phys Chem C 114:20793–20800

    Article  CAS  Google Scholar 

  13. Rimola A, Corno M, Zicovich-Wilsonb CM, Ugliengo P (2009) Phys Chem Chem Phys 11:9005–9007

    Article  CAS  Google Scholar 

  14. Hammer B, Hansen LB, Nőrskov JK (1999) Phys Rev B 59:7413–7421

    Article  Google Scholar 

  15. Troullier N, Martins JL (1991) Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  16. Soler JEM, Artacho E, Gale JD, García A, Junquera J, Ordejon P, Sànchez-Portal D (2002) J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  17. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  18. Hestenes MR, Stiefel E (1952) Research of the National Bureau of Standards 49:409–436

    Google Scholar 

  19. Grimme S (2006) J Comp Chem 27:1787–1799

    Article  CAS  Google Scholar 

  20. Smith W, Yong CW, Rodger PM (2002) Mol Simul 28:385–471

    Article  CAS  Google Scholar 

  21. Rimola A, Civalleri B, Ugliengo P (2010) Phys Chem Chem Phys 12:6357–6366

    Article  CAS  Google Scholar 

  22. Jurečka P, Černý J, Hobza P, Salahub DR (2007) J Comp Chem 28:555–569

    Article  Google Scholar 

  23. Du MH, Kolchin A, Cheng HP (2004) J Chem Phys 120:1044–1054

    Article  CAS  Google Scholar 

  24. Yang J, Wang EG (2006) Physical Review B 73:035406

    Article  Google Scholar 

  25. Yang J, Meng S, Xu LF, Wang EG (2004) Phys Rev Lett 92:146102

    Article  Google Scholar 

  26. Zhao Y, Truhlar D (2008) Theo Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  27. van der Wijst T, Guerra CF, Swart M, Bickelhaupt FM (2006) Chem Phys Lett 426:415–421

    Article  Google Scholar 

  28. Leung K, Nielsen IMB, Criscenti LJ (2009) J Am Chem Soc 131:18358–18365

    Article  CAS  Google Scholar 

  29. Tosoni S, Sauer J (2010) Phys Chem Chem Phys 12:14330–14340

    Article  CAS  Google Scholar 

  30. Mueller JE, van Duin ACT, Goddard WA (2009) J Phys Chem C 113:20290–20306

    Article  CAS  Google Scholar 

  31. Perdew JP, Zunger A (1981) Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  32. Hassanali AA, Zhang H, Knight C, Shin YK, Singer SJ (2010) J Chem Theo Comp 6:3456–3471

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Culture, Sports, Science, and Technology (2010-0026100 and 2009-0071412). JJ thanks Prof. Nagase for being supportive and inspirational over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonkyung Jang.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1213 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mian, S.A., Gao, X., Nagase, S. et al. Adsorption of catechol on a wet silica surface: density functional theory study. Theor Chem Acc 130, 333–339 (2011). https://doi.org/10.1007/s00214-011-0982-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0982-0

Keywords

Navigation