Skip to main content
Log in

Divalent Pb(0) compounds

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations have been carried out on four novel dicoordinated lead compounds PbL2 where L is an N-heterocyclic ylidene or a five-membered cyclic ylidene (1Pb, 2Pb, 4Pb, 5Pb) and for a plumbylene-coordinated carbone CL2 (3Pb). The theoretically predicted equilibrium geometries and the first and second proton affinities of 1Pb5Pb are reported. Geometry optimizations have also been carried out for the complexes with one and two BH3 ligands 1Pb(BH 3 )5Pb(BH 3 ) and 1Pb(BH 3 ) 2 5Pb(BH 3 ) 2 , and for the transition metal complexes 1PbW(CO) 5 5PbW(CO) 5 and 1PbNi(CO) 3 5PbNi(CO) 3 . The results suggest that the molecules 1Pb, 2Pb and 4Pb possess properties which identify them as divalent Pb(0) compounds (plumbylones). This comes to the fore by the theoretically predicted second PAs which are very large for a lead compound and (for 1Pb and 4Pb) by the BDE of the second BH3 ligand. Compound 3Pb should be considered as a plumbylene-coordinated divalent C(0) compound (carbone) which has a very high second PA of 195.1 kcal/mol. The geometry optimization of 5Pb gives an equilibrium structure which identifies the molecules as divalent Pb(II) compound, i.e., as a plumbylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. There are no genuine σ or π orbitals in 1Pb5Pb because the molecules have no mirror plane. However, the shape of the MOs resembles σ- or π-type orbitals which are symmetric or antisymmetric with respect to a local plane of the central E–E′–E moiety.

References

  1. Dyker CA, Lavallo V, Donnadieu B, Bertrand G (2008) Angew Chem 120:3250

    Article  Google Scholar 

  2. Dyker CA, Lavallo V, Donnadieu B, Bertrand G (2008) Angew Chem Int Ed 47:3206

    Article  CAS  Google Scholar 

  3. Fürstner A, Alcarazo M, Goddard R, Lehmann CW (2008) Angew Chem 120:3254

    Article  Google Scholar 

  4. Fürstner A, Alcarazo M, Goddard R, Lehmann CW (2008) Angew Chem Int Ed 47:3210

    Article  Google Scholar 

  5. Dyker CA, Bertrand G (2009) Nature Chem 1:265

    Article  CAS  Google Scholar 

  6. Kaufhold O, Hahn FE (2008) Angew Chem 120:4122

    Article  Google Scholar 

  7. Kaufhold O, Hahn FE (2008) Angew Chem Int Ed 47:4057

    Article  CAS  Google Scholar 

  8. Jablonski M, Palusiak M (2009) Phys Chem Chem Phys 11:5711

    Article  CAS  Google Scholar 

  9. Alcarazo M, Lehmann CW, Anoop A, Thiel W, Fürstner A (2009) Nature Chem 1:295

    Article  CAS  Google Scholar 

  10. Patel DS, Bharatam PV (2010) Curr Sci 99:425

    Google Scholar 

  11. Dellus D, Kato T, Bagán X, Saffon-Merceron N, Branchadell V, Baceiredo A (2010) Angew Chem 122:6950

    Article  Google Scholar 

  12. Dellus D, Kato T, Bagán X, Saffon-Merceron N, Branchadell V, Baceiredo A (2010) Angew Chem Int Ed 49:6798

    Article  CAS  Google Scholar 

  13. Tonner R, Öxler F, Neumüller B, Petz W, Frenking G (2006) Angew Chem 118:8206

    Article  Google Scholar 

  14. Tonner R, Öxler F, Neumüller B, Petz W, Frenking G (2006) Angew Chem Int Ed 45:8038

    Article  CAS  Google Scholar 

  15. Tonner R, Frenking G (2008) Chem Eur J 14:3260

    Article  CAS  Google Scholar 

  16. Tonner R, Frenking G (2008) Chem Eur J 14:3273

    Article  CAS  Google Scholar 

  17. Tonner R, Heydenrych G, Frenking G (2008) Chem Phys Chem 9:1474

    CAS  Google Scholar 

  18. Frenking G, Tonner R (2009) Pure Appl Chem 81:597

    Article  CAS  Google Scholar 

  19. Petz W, Frenking G (2010) Top Organomet Chem 30:49

    Article  CAS  Google Scholar 

  20. Ramirez F, Desai NB, Hansen B, McKelvie N (1961) J Am Chem Soc 83:3539

    Article  CAS  Google Scholar 

  21. Tonner R, Frenking G (2007) Angew Chem 119:8850

    Article  Google Scholar 

  22. Tonner R, Frenking G (2007) Angew Chem Int Ed 46:8695

    Article  CAS  Google Scholar 

  23. Klein S, Tonner R, Frenking G (2010) Chem Eur J 16:10160

    Article  CAS  Google Scholar 

  24. Klein S, Frenking G (2010) Angew Chem 122:7260

    Article  Google Scholar 

  25. Klein S, Frenking G (2010) Angew Chem Int Ed 49:7106

    Article  CAS  Google Scholar 

  26. Takagi N, Shimizu T, Frenking G (2009) Chem Eur J 15:3448

    Article  CAS  Google Scholar 

  27. Takagi N, Shimizu T, Frenking G (2009) Chem Eur J 15:8593

    Article  CAS  Google Scholar 

  28. Ishida S, Iwamoto T, Kabuto C, Kira M (2003) Nature 421:725

    Article  CAS  Google Scholar 

  29. Iwamoto T, Masuda H, Kabuto C, Kira M (2005) Organometallics 24:197

    Article  CAS  Google Scholar 

  30. Kira M, Iwamoto T, Ishida S, Masuda H, Abe T, Kabuto C (2009) J Am Chem Soc 131:17135

    Article  CAS  Google Scholar 

  31. Kosa M, Karni M, Apeloig Y (2006) J Chem Theory Comput 2:956

    Article  CAS  Google Scholar 

  32. Veszprémi T, Olasz A, Pintér B (2006) Silicon Chem 3:187

    Article  Google Scholar 

  33. Veszprémi T, Petrov K, Nguyen CT (2006) Organometallics 25:1480

    Article  Google Scholar 

  34. Petrov KT, Veszprémi T (2008) Int J Chem Model 1:1

    Google Scholar 

  35. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  36. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  37. Ahlrichs R, Baer M, Haeser M, Horn H, Koelmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  38. Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  CAS  Google Scholar 

  39. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Frenking.

Additional information

Dedicated to Professor Pekka Pyykkö on the occasion of his 70th birthday and published as part of the Pyykkö Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagi, N., Frenking, G. Divalent Pb(0) compounds. Theor Chem Acc 129, 615–623 (2011). https://doi.org/10.1007/s00214-011-0909-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0909-9

Keywords

Navigation