Skip to main content
Log in

Charge transport and electronic properties of N-heteroquinones: quadruple weak hydrogen bonds and strong π–π stacking interactions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The charge transport and photophysical properties of N-heteroquinones, which can function as n-type organic semiconductors in organic field-effect transistors (OFETs) with high electron mobility, were systematically investigated using hopping model, band theory, and time-dependent density functional theory (TDDFT). The calculated absorption spectra and electron mobility are in good agreement with experimental results. To the studied compounds, subtle structural modifications can greatly reduce the reorganization energy. There are two main kinds of intermolecular interaction forces of the studied compounds in the crystal, which result from intermolecular π–π and hydrogen bonds interactions, respectively. The results of hopping model show that the electron transport properties are mainly determined by pathways containing intermolecular π–π interactions, and hole transport properties are mainly determined by pathways containing intermolecular hydrogen bonds from the standpoint of transfer integral. Moreover, electronic transfer integral value increases with the enhancement of intermolecular overlap corresponding to the overlap extent of π–π packing. Hole transfer integral value decreases with decreasing the number of hydrogen bonds. This means that charge transport properties can be efficiently tuned by controlling the relative positions of the molecules and the number of hydrogen bonds. The analysis of band structure also supports the conclusion of hopping model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yoshiro Y (2009) Sci Technol Adv Mater 10:024313

    Article  Google Scholar 

  2. Newman CR, Frisbie CD, da Silva Filho DA, Bredas JL, Ewbank PC, Mann KR (2004) Chem Mater 16:4436–4451

    Article  CAS  Google Scholar 

  3. Zaumseil J, Sirringhaus H (2007) Chem Rev 107:1296–1323

    Article  CAS  Google Scholar 

  4. Yamashita Y (2009) Chem Lett 38:870–875

    Article  CAS  Google Scholar 

  5. Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Angew Chem Int Ed 47:4070–4098

    Article  CAS  Google Scholar 

  6. Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD (2007) Mater Today 10:28–33

    Article  CAS  Google Scholar 

  7. Anthony JE (2006) Chem Rev 106:5028–5048

    Article  CAS  Google Scholar 

  8. Murphy AR, Fréchet JMJ (2007) Chem Rev 107:1066–1096

    Article  CAS  Google Scholar 

  9. Wen Y, Liu Y (2010) Adv Mater 22:1331–1345

    Article  CAS  Google Scholar 

  10. de Leeuw DM, Simenon MMJ, Brown AR, Einerhand REF (1997) Synth Met 87:53–59

    Article  Google Scholar 

  11. Tang ML, Reichardt AD, Wei P, Bao Z (2009) J Am Chem Soc 131:5264–5273

    Article  CAS  Google Scholar 

  12. Usta H, Risko C, Wang Z, Huang H, Deliomeroglu MK, Zhukhovitskiy A, Facchetti A, Marks TJ (2009) J Am Chem Soc 131:5586–5608

    Article  CAS  Google Scholar 

  13. Jones BA, Facchetti A, Wasielewski MR, Marks TJ (2007) J Am Chem Soc 129:15259–15278

    Article  CAS  Google Scholar 

  14. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL (2007) Chem Rev 107:926–952

    Article  CAS  Google Scholar 

  15. Brédas JL, Calbert JP, da Silva Filho DA, Cornil J (2002) Proc Natl Acad Sci USA 99:5804–5809

    Article  Google Scholar 

  16. Ando S, Murakami R, Nishida JI, Tada H, Inoue Y, Tokito S, Yamashita Y (2005) J Am Chem Soc 127:14996–14997

    Article  CAS  Google Scholar 

  17. Bao Z, Lovinger AJ, Dodabalapur A (1996) Appl Phys Lett 69:3066–3068

    Article  CAS  Google Scholar 

  18. Nalwa H (1997) Handbook of organic conductive molecules and polymers, vol 1 C4. Wiley, New York

    Google Scholar 

  19. Balzani V, Venturi M, Credi A (2003) Molecular devices and machines: a journey into the nano world; Vch Verlagsgesellschaft Mbh

  20. Winkler M, Houk KN (2007) J Am Chem Soc 129:1805–1815

    Article  CAS  Google Scholar 

  21. Miao S, Appleton AL, Berger N, Barlow S, Marder SR, Hardcastle KI, Bunz UHF (2009) Chem Eur J 15:4990–4993

    Article  CAS  Google Scholar 

  22. Tang Q, Liang Z, Liu J, Xu J, Miao Q (2010) Chem Comm 46:2977–2979

    Article  CAS  Google Scholar 

  23. Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971–5004

    Article  CAS  Google Scholar 

  24. Peng Q, Yi Y, Shuai Z, Shao J (2007) J Am Chem Soc 129:9333–9339

    Article  CAS  Google Scholar 

  25. Zhang J, Frenking G (2004) J Phys Chem A 108:10296–10301

    Article  CAS  Google Scholar 

  26. Yang GC, Su T, Shi SQ, Su ZM, Zhang HY, Wang Y (2007) J Phys Chem A 111:2739–2744

    Article  CAS  Google Scholar 

  27. Yang GC, Liao Y, Su ZM, Zhang HY, Wang Y (2006) J Phys Chem A 110:8758–8762

    Article  CAS  Google Scholar 

  28. Gao HZ, Qin CS, Zhang HY, Wu SX, Su ZM, Wang Y (2008) J Phys Chem A 112:9097–9103

    Article  CAS  Google Scholar 

  29. Wu J, Wu SX, Geng Y, Yang GC, Shabbir M, Jin JL, Liao, Su ZM, (2010) Theor Chem Acc. doi:10.1007/s00214-0010-00730-x

  30. Becke AD (1993) J Che Phys 98:1372–1377

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1998) Phys Re B 37:785

    Article  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) GAUSSIAN 03, (Revision C.02). Gaussian, Inc., Pittsburgh

    Google Scholar 

  33. Nelsen SF, Trieber DA, Ismagilov RF, Teki Y (2001) J Am Chem Soc 123:5684–5694

    Article  CAS  Google Scholar 

  34. Nelsen SF, Blomgren F (2001) J Org Chem 66:6551–6559

    Article  CAS  Google Scholar 

  35. Sakanoue K, Motoda M, Sugimoto M, Sakaki S (1999) J Phys Chem A 103:5551–5556

    Article  CAS  Google Scholar 

  36. Malagoli M, Brédas JL (2000) Chem Phys Lett 327:13–17

    Article  CAS  Google Scholar 

  37. Li XY, Tong J, He FC (2000) Chem Phys 260:283–294

    Article  CAS  Google Scholar 

  38. Lin BC, Cheng CP, Lao ZP (2003) J Phys Chem A 107:5241–5251

    Article  CAS  Google Scholar 

  39. Marcus RA (1985) Biochim Biophys Acta 811:265

    CAS  Google Scholar 

  40. Marcus RA (1993) Rev Mod Phys 65:599

    Article  CAS  Google Scholar 

  41. Balzani V, Juris A, Venturi M, Campagna S, Serroni S (1996) Chem Rev 96:759–834

    Article  CAS  Google Scholar 

  42. Deng WQ, Goddard WA (2004) J Phys Chem B 108:8614–8621

    Article  CAS  Google Scholar 

  43. Song Y, Di CA, Yang X, Li S, Xu W, Liu Y, Yang L, Shuai Z, Zhang D, Zhu D (2006) J Am Chem Soc 128:15940–15941

    Article  CAS  Google Scholar 

  44. Schein LB, McGhie AR (1979) Phys Rev B 20:1631

    Article  CAS  Google Scholar 

  45. Yang XD, Li Q, Shuai ZG (2007) Nanotechnology 18:424029

    Article  Google Scholar 

  46. Yang XD, Wang L, Wang C, Long W, Shuai Z (2008) Chem Mater 20:3205–3211

    Article  CAS  Google Scholar 

  47. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  48. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  49. Kresse G, Hafner J (1994) Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  50. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  51. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  52. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  53. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  54. Malagoli M, Coropceanu V, Filho DA, Bredas JL (2004) J Chem Phys 120:7490–7496

    Article  CAS  Google Scholar 

  55. da Silva Filho DA, Coropceanu V, Fichou D, Gruhn NE, Bill TG, Gierschner J, Cornil J, Brédas JL (2007) Philos Trans R Soc London A 365:1435–1452

    Article  CAS  Google Scholar 

  56. Gruhn NE, da Silva Filho DA, Bill TG, Malagoli M, Coropceanu V, Kahn A, Brédas JL (2002) J Am Chem Soc 124:7918–7919

    Article  CAS  Google Scholar 

  57. Coropceanu V, Malagoli M, da Silva Filho DA, Gruhn NE, Bill TG, Brédas JL (2002) Phys Rev Lett 89:275503

    Article  CAS  Google Scholar 

  58. Lin BC, Cheng CP, You ZQ, Hsu CP (2004) J Am Chem Soc 127:66–67

    Article  Google Scholar 

  59. Valeev EF, Coropceanu V, da Silva Filho DA, Salman S, Brédas JL (2006) J Am Chem Soc 128:9882–9886

    Article  CAS  Google Scholar 

  60. Hutchison GR, Ratner MA, Marks TJ (2005) J Am Chem Soc 127:16866–16881

    Article  CAS  Google Scholar 

  61. Troisi A, Orlandi G (2001) Chem Phys Lett 344:509–518

    Article  CAS  Google Scholar 

  62. Irfan A, Zhang JP, Chang YF (2009) Chem Phys Lett 483:143–146

    Article  CAS  Google Scholar 

  63. Li L, Tang Q, Li H, Yang X, Hu W, Song Y, Shuai Z, Xu W, Liu Y, Zhu D (2007) Adv Mater 19:2613–2617

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Project No. 20903020; 20703008), Chang Jiang Scholars Program (2006), Program for Changjiang Scholars and Innovative Research Team in University (IRT0714), National Basic Research Program of China (973 Program—2009CB623605), the Science and Technology Development Project Foundation of Jilin Province (20090146), the Training Fund of NENU’s Scientific Innovation Project (NENU-STC08005 and -STC08012), The Project-sponsored by SRF for ROCS, SEM and Open Project Program of State Key Laboratory of Supramolecular Structure and Materials, Jilin University. And we also thank Patrik Callis (MSU) for supplying the Bozesuite program. Science Foundation for Young Teachers of Jilin Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongmin Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G., Si, Y., Geng, Y. et al. Charge transport and electronic properties of N-heteroquinones: quadruple weak hydrogen bonds and strong π–π stacking interactions. Theor Chem Acc 128, 257–264 (2011). https://doi.org/10.1007/s00214-010-0841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0841-4

Keywords

Navigation