Skip to main content
Log in

A quantum mechanical study of the stability and structural properties of substituted acylthiourea compounds

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The conformational, structural and electronic properties of eight acylthiourea derivatives with the general form N-acyl-N′, N′-alkylthiourea have been investigated computationally at the MP2 level of theory and the 6-311G(d) basis set. Transition states between the four stable conformations were identified and characterized. There is a good correlation between the electron density at the bond critical point of each of the three C–N bonds present in the molecules, the calculated bond length, and the rotational barrier around these bonds. The calculations suggest the C(S)-N′ bond to have considerable double bond character which, according to analysis in terms of the Natural Bond Orbitals paradigm, can be attributed to a more favorable delocalization of the N′ lone pair into the antibonding π*(C=S) orbital than the lone pair on the other nitrogen. The influence of the various substituents on the structural and energetic features of the acylthiourea backbone is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Neucki E (1873) Ber Dtsch Chem Ges 6: 598

    Article  Google Scholar 

  2. Mühl P, Gloe K, Dietze F, Hoyer E, Beyer LZ (1986) Chem 26: 81

    Google Scholar 

  3. Koch KR (2001) Coord Chem Rev 216–217: 473–488

    Article  Google Scholar 

  4. Sacht C, Datt MS (2000) Polyhedron 19(11): 1347–1354

    Article  CAS  Google Scholar 

  5. Reinel M, Richter R, Kirmse R (2002) Zeitsch Anorg Allg Chem 628(1): 41–44

    Article  CAS  Google Scholar 

  6. Mautjana AN, Miller JDS, Gie A, Bourne SA, Koch KR (2003) Dalton Trans 10: 1952–1960

    Article  Google Scholar 

  7. Katritzky AR, Cai X, Rogovoy BV (2003) J Comb Chem 5(4): 392–399

    Article  CAS  Google Scholar 

  8. Ranise A, Spallarossa A, Bruno O, Schenone S, Fossa P, Menozzi G, Bondavalli F, Mosti L, Capuano A, Mazzeo F, Falcone G, Filippelli W (2003) Farmaco 58(9): 765–780

    Article  CAS  Google Scholar 

  9. Katritzky AR, Kirichenko N, Rogovoy BV, Kister J, Tao H (2004) Synthesis 11: 1799–1805

    Article  Google Scholar 

  10. Seth PP, Robinson DE, Jefferson EA, Swayze EE (2002) Tetr Lett 43(41): 7303–7306

    Article  CAS  Google Scholar 

  11. Rodger A, Patel KK, Sanders KJ, Datt M, Sacht C, Hannon MJ (2002) J Chem Soc Dalton Trans 19: 3656–3663

    Article  Google Scholar 

  12. Hernandez W, Spodine E, Munoz JC, Beyer L, Schroeder U, Ferreira J, Pavani M (2003) Bioinorg Chem Appl 1(3–4): 271–284

    Article  CAS  Google Scholar 

  13. Sun C, Huang H, Feng M, Shi X, Zhang X, Zhou P (2006) Bioorg Med Chem Lett 16(1): 162–166

    Article  CAS  Google Scholar 

  14. Hernandez W, Spodine E, Beyer L, Schroder U, Richter R, Ferreira J, Pavani M (2005) Bioinorg Chem Appl 3(3–4): 299–316

    Article  CAS  Google Scholar 

  15. Furuta T, Sakai T, Senga T, Osawa T, Kubo K, Shimizu T, Suzuki R, Yoshino T, Endo M, Miwa A (2006) J Med Chem 49(7): 2186–2192

    Article  CAS  Google Scholar 

  16. Kalgutkar AS, Driscoll J, Zhao SX, Walker GS, Shepard RM, Soglia JR, Atherton J, Yu L, Mutlib AE, Munchhof MJ, Reiter LA, Jones CS, Doty JL, Trevena KA, Shaffer CL, Ripp SL (2007) Chem Res Toxicol 20(12): 1954–1965

    Article  CAS  Google Scholar 

  17. Hernandez W, Spodine E, Vega A, Richter R, Griebel J, Kirmse R, Schroeder U, Beyer L (2004) Zeitsch Anorg Allg Chem 630(10): 1381–1386

    Article  Google Scholar 

  18. Habtu MM, Bourne SA, Koch KR, Luckay RC (2006) New J Chem 30(8): 1155–1162

    Article  CAS  Google Scholar 

  19. Mao XP, Huang JF, Duan ZF, Du ZY, Huang ZS, Ma L, Gu LQ (2005) Chin Chem Lett 16(5): 609–612

    CAS  Google Scholar 

  20. Hallale O, Bourne SA, Koch KR (2005) New J Chem 29(11): 1416–1423

    Article  CAS  Google Scholar 

  21. Woldu MG (2004) M.Sc thesis, University of Stellenbosch, South Africa

  22. Dillen J, Woldu MG, Koch KR (2006) Acta Crystallogr E 62: o4819–o4820

    Article  Google Scholar 

  23. Dillen J, Woldu MG, Koch KR (2006) Acta Crystallogr E62: o5225–o5227

    CAS  Google Scholar 

  24. Dillen J, Woldu MG, Koch KR (2006) Acta Crystallogr E62: o5228–o5229

    CAS  Google Scholar 

  25. Sosa-Albertus M, Piris M (2001) J Mol Struct 598(2–3): 261–265

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr. JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Menucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challocombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KZ, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Menucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Hona Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck, AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez A, Pople JA (2003) Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh

  28. Dillen JLM (1993) QCPE Bull 13: 6

    Google Scholar 

  29. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  30. Popelier P (2000) Atoms in molecule—an introduction. Pearson Education Ltd, Singapore

    Google Scholar 

  31. Foster JP, Weinhold F (1980) J Am Chem Soc 102: 7211–7218

    Article  CAS  Google Scholar 

  32. Reed AE, Weinhold F (1983) J Chem Phys 78: 4066–4073

    Article  CAS  Google Scholar 

  33. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83: 735–746

    Article  CAS  Google Scholar 

  34. Glendening FD, Weinhold F (1998) J Comput Chem 19: 593–609

    Article  CAS  Google Scholar 

  35. Glendening FD, Weinhold F (1998) J Comput Chem 19: 610–627

    Article  CAS  Google Scholar 

  36. Glendening ED, Badenhoop JK, Weinhold F (1998) J Comput Chem 19: 628–646

    Article  CAS  Google Scholar 

  37. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

  38. Plutin AM, Màrquez H, Ochoa E, Morales M, Morán L, Rodríguez Y, Suàrez M, Martín N, Seoane C (2000) Tetrahedron 56: 1533–1539

    Article  CAS  Google Scholar 

  39. Clabo DA, Allen WD, Remington RB, Yamaguchi Y, Schaefer HF III (1988) Chem Phys 123: 187

    Article  CAS  Google Scholar 

  40. Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72: 99

    Article  CAS  Google Scholar 

  41. Page M, McIver JW Jr (1988) J Chem Phys 88: 922

    Article  CAS  Google Scholar 

  42. Page M, Doubleday C, McIver JW Jr (1990) J Chem Phys 93: 5634

    Article  CAS  Google Scholar 

  43. Barone V (1994) J Chem Phys 101: 10666

    Article  CAS  Google Scholar 

  44. Minichino C, Barone V (1994) J Chem Phys 100: 3717

    Article  CAS  Google Scholar 

  45. Barone V, Minichino C (1995) J Mol Struct Theochem 330: 365

    Article  CAS  Google Scholar 

  46. Miller WH, Hernandez R, Handy NC, Jayatilaka D, Willets A (1990) Chem Phys Lett 172: 62

    Article  CAS  Google Scholar 

  47. Allen FH (2002) Acta Crystallogr B 58: 380–388

    Article  Google Scholar 

  48. Filleux-Blanchard ML, Durand A (1972) Bull Soc Chim Fr 12: 4710–4715

    Google Scholar 

  49. Martin ML, Filleux-Blanchard ML, Martin GJ, Webb GA (1980) Org Magn Reson 13(6): 396–402

    Article  CAS  Google Scholar 

  50. Sandstrom J (1967) J Phys Chem 71(7): 2318–2325

    Article  CAS  Google Scholar 

  51. Wiberg KB, Bader RFW, Lau CDH (2001) J Am Chem Soc 109: 1001

    Article  Google Scholar 

  52. Pauling LJ (1927) Am Chem Soc 49: 765–790

    Article  CAS  Google Scholar 

  53. Pauling LJ (1929) Am Chem Soc 51: 1010–1026

    Article  CAS  Google Scholar 

  54. Pauling L, Brockway LO, Beach JY (1935) J Am Chem Soc 57: 2705–2709

    Article  CAS  Google Scholar 

  55. Pauling L (1945) The Nature of the Chemical Bond. Cornell University Press, Ithaca, NY

    Google Scholar 

  56. Alkorta I, Rozas I, Elguiro J (1998) Struct Chem 9: 243–247

    Article  CAS  Google Scholar 

  57. Aruna S, Shanmugam G, Manogaran S, Sathyanarayana DN (1982) Bull Chem Soc Jpn 55: 3612–3616

    Article  CAS  Google Scholar 

  58. Slivko SA, Kharitonov YuYa, Kuznetsov SL, Gushchina TN (1993) J Struct Chem 34:225–231 (translated from Slivko SA, Kharitonov YuYa, Kuznetsov SL, Gushchina TN (1993) Zh Strukt Khim 34(2):58–65)

  59. Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683–11700. A scale factor for the 6–311G(d) basis set is not available. The value of 0.943 is the average of the factors listed for the MP2 level of theory, and is thus only an approximation

    Google Scholar 

  60. Kharitonov YuYa, Gushchina TN, Gusev AV, Kirillova NI (1988) Zh Neorg Khim 33(9): 2228–2233

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Dillen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woldu, M.G., Dillen, J. A quantum mechanical study of the stability and structural properties of substituted acylthiourea compounds. Theor Chem Account 121, 71–82 (2008). https://doi.org/10.1007/s00214-008-0451-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0451-6

Keywords

Navigation